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Abstract— We propose a new deep learning framework to
decompose monocular videos into 3D geometry (camera pose
and depth), moving objects, and their motions, with no su-
pervision. We build upon the idea of view synthesis, which
uses classical camera geometry to re-render a source image
from a different point-of-view to obtain supervisory signals,
specified by a predicted relative 6-degree-of-freedom pose and
depth map. However, the typical view synthesis equations rely
on a strong assumption: that objects in scenes do not move.
This rigid-world assumption limits the predictive power, and
rules out learning about objects automatically. We propose a
simple solution: minimize the synthesis error on small local
regions of the image instead. While the scene as a whole
may be non-rigid, it is always possible to find small regions
that are approximately rigid, such as inside a moving object.
Our network can learn a dense pose map describing poses for
each local region. This represents a significantly richer model,
including 6D object motions, with little additional complexity.
We establish very competitive results on unsupervised odometry
and depth prediction on KITTI. We also demonstrate new
capabilities on EPIC-Kitchens, a challenging dataset of indoor
videos, where there is no ground truth information for depth,
odometry, object segmentation or motion - yet all are recovered
automatically by our approach.

I. INTRODUCTION

It is a long-standing goal in both robotics and computer vi-
sion to achieve a holistic understanding of a visual scene: that
is, to decompose it into meaningful elements that together
explain the full visual input [1]. This goal is also the core of
representation learning, which is concerned with extracting
representations from data that generalize well for multiple
tasks [2]. For example, a representation that was trained for
object detection will invariably ignore details that are crucial
for other tasks that are not object-centric, such as monocular
depth estimation. As such, it is desirable to learn models that
are not narrowly-scoped to a single task, although it is not
always clear how to do so without an increased annotation
burden for each additional task.

A recent line of work that promises to achieve both
goals at once, i.e., a holistic scene understanding without
demanding additional annotations, considering unsupervised
learning via view synthesis [3], [4]. It cleverly combines two
predictions (i.e. tasks), relative camera pose estimation and
depth estimation, to re-render an image from another point-
of-view. By synthesizing a source frame from a video into
another target frame, we obtain the necessary supervisory
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signals (i.e. the error between the synthetic and the real
image) to enable end-to-end learning.

It is natural to ask if more tasks can be integrated into this
framework, and intuitively the answer is yes. Each additional
task that contributes to the image synthesis, by capturing an
additional element of the visual world, should increase the
fidelity of the model and achieve a lower reconstruction error.
In this work, we propose to add the unsupervised tasks of
object segmentation, and object 6D motion estimation. Since
our primary interest is still the recovery of 3D geometry
and motion, however, we do not seek, as done by some
prior works [5], [6], [7], “semantic” objects. Instead, we
decompose the image into regions that are likely to be
characterized by a well defined rigid motion, and learn those
automatically, by optimizing for the same view synthesis
objective. Our technical contribution is a locally-rigid model
that supports crisp object boundaries through segmentation,
and an efficient implementation of a “tiling” operator for
local region reconstruction. This results in an effective
lightweight model that transforms the original rigid-world
model where changes between frames are characterized only
by a single relative camera pose and depths [4], to a non-rigid
model where moving objects are also taken into account.

Experiments show that our proposed model is much more
expressive, by making predictions that are outside the ca-
pabilities of the original model (namely segment moving
objects and calculate their 6D motions). We show qualitative
results of our neural networks successfully learning to seg-
ment non-rigid objects (hands and household objects), and
recover accurate depth maps, in EPIC-Kitchens [8], a large-
scale indoors dataset that has not been used in this context
before due to its challenging nature. We also demonstrate
that the unsupervised segmentation cues and non-rigid model
are beneficial for the previously-considered tasks. Our model
achieves very competitive performance compared with state-
of-the-art results on KITTI [9] in monocular depth estimation
(88.9% accuracy at δ < 1.25), as well as visual odometry
(0.011/0.010 ATE), from purely unsupervised data.

II. RELATED WORK

Self-supervised learning [10] has gathered significant at-
tention recently, since it promises to achieve unsupervised
learning by reusing standard elements from supervised learn-
ing (e.g. architectures, loss functions), in relatively intuitive
configurations. It can generally be described as the task of
predicting one part of the input data given only another part.
Successful examples include predicting the spatial relation-
ship between two image regions [11], colorizing images [12],



and predicting inertial measurement unit (IMU) data (odome-
try) [13]. Within self-supervised learning, video prediction is
a relatively popular task. It consists of generating a subset of
a video given the remaining video, such as video generation
with neural networks [14], and causal convolutions as the
PixelCNN for video [15]. While successful, these approaches
often produce blurry or physically-implausible predictions,
and the image generation models are not interpretable.

Approaching this problem by view synthesis [4] is rel-
atively recent, but draws from traditional works in vi-
sual geometry and Simultaneous Location And Mapping
(SLAM) [16], [17]. Instead of using a neural network for
generation, it uses a differentiable warp (image deformation)
to transform a source frame into a target frame, minimizing
the reconstruction error. The task of the neural network is
then to predict physically-interpretable quantities, such as
3D geometry, depth and poses, that are used to compute
the image warp. This physical model of the world is useful
in itself, and can be used for downstream tasks (such as
visual odometry or 3D reconstruction). This line of work was
pioneered by Garg et al. [3], who considered stereo pairs or
pairs of frames with known pose. This was further developed
to include predicted poses by Zhou et al. [4] (SfMLearner),
and concurrently by Vijayanarasimhan et al. [18] (SfM-Net),
who also considered multiple layers to account for objects.
The SfMLearner emphasized no supervision (as opposed to
mixed modes of supervision like SfM-Net), and a simple
architecture, so it forms the basis of our work. We describe
it in detail in Sec. III. Further developments include improv-
ing the pose estimate by a direct visual odometry method
(essentially second-order gradient descent) [19], and adding
a FlowNet that can refine the image warp by fine-grained
optical flow estimates [20]. Other proposed improvements
are stereo inputs [21], [22] and probabilistic outputs [23],
bundle adjustment to warp stored key frames instead of
recent frames [24], adversarial training [25], and feature
computation in 3D space [26].

III. UNSUPERVISED LEARNING BY VIEW SYNTHESIS

We begin by describing the canonical self-supervised setup
for learning monocular depth estimation, inspired by early
methods such as SfMLearner [4] (Sec. II). Assume that we
are given a pair of images (Is, It), respectively the source and
target, usually extracted as nearby frames from a video. If the
scene is Lambertian and unchanged between frames (rigid-
world assumption) and if we discount occlusions, the target
image Ît can be predicted from knowledge of the source
image Is, the depth map D, and the relative camera pose P
between the two views:

Ît = Ψ(Is, P, D) (1)

Synthesizing the target image amounts to using projective
geometry [1] to find which pixels correspond in the two
views and then transport their intensities from source to
target. Namely, the synthesis function Ψ is a warp that
linearly interpolates each pixel of Is at coordinates (u,v) to

(u′,v′) according to the projective equations:[
u′,v′,1

]T
= KPZ (Duv)K−1 [u,v,1]T , (2)

where K is the camera intrinsics matrix, Duv retrieves the
depth at pixels (u,v), and Z(Duv) is the transformation matrix
that translates any input 3D point along the z axis by this
depth. We can extract a supervisory signal for depth and pose
by comparing the measured and predicted target image:

Lrigid =
1
|D| ∑

(Is, It)∈D

∣∣It−Ψ(Is, P, D)
∣∣
M (3)

where D is a training dataset of image pairs, M is a mask
that tells which pixels can be explained by the model and
|v|M = ∑k Mk|vk|, i.e. the L1 norm weighted by a mask M.

Of course, the pose P, depth D and mask M must be
obtained somehow. This is the role of the pose, depth and
mask networks:

P = ρ
(
It, Is|ω

)
, d = φ

(
It|ω

)
, M = ε

(
It, Is|ω

)
(4)

with parameters ω . The last layer of the mask network is
a sigmoid, to constrain outputs to the [0,1] range. Back-
propagating the error in Eq. 3 to the networks’ parameters
ω is what allows end-to-end learning. Since predicting M = 0
is a trivial minimum of Eq. 3, a regularization term is added,
penalizing the distance between M and a target of 1:

Lreg = ‖M−1‖2 (5)

The overall objective is then minω Lrigid + λLreg, with a
regularization weight λ .

IV. PROPOSED METHOD

As we mentioned in Sec. I, the main limitation of the
SfM-Learner method from Sec. III is that it assumes a rigid
world. Our main goal then is to augment it to also account
for freely-moving, potentially non-rigid objects. Note that
since most pixels in common scenes correspond to a static
background, it is undesirable to have a fully non-rigid model,
as that would afford too many degrees-of-freedom and thus
be prone to overfitting (a hypothesis that we verify in Sec. V).
For this reason, we segment the pixels into 2 categories:
background (with a global rigid model), and objects (with
a local, non-rigid model). Together, they fully explain all
pixels of the image. The required segmentation network is
trained unsupervised as part of the overall objective, and
so object segmentation is obtained “for free”. An overview
of the framework is illustrated in Fig. 1. We will now
describe these three elements: non-rigid and rigid models,
and segmentation.

A. Locally-rigid scene model

The starting point for our method is the simple fact
that, although a scene is not globally rigid, it usually is
locally rigid. It is always possible to make the rigid-world
assumption essentially correct, by narrowing down the view
to a rigid region (e.g. background, a rigid object, or a smaller
region within a non-rigid object). This seems to suggest
that the previous method (Sec. III) can express a non-rigid
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Fig. 1: Overview. Top panel: From a pair of video frames, CNNs predict 3 maps: depth, local dense 6D motion, and
foreground segmentation. Higher depths are darker; the axes of motion translation and rotation (XYZ) are encoded as RGB
channels; and foreground segmentation is white. Bottom-left: We model background pixels as a rigid object, with global
6D motion obtained by averaging their predicted motions. An L1 reconstruction error w.r.t. target image It allows learning.
Bottom-right: Foreground pixels are similar, but only locally-rigid; inputs are passed through a tiling operator, dividing
them into small patches. This allows motions per object/patch, unlike the fully rigid model.

model, by focusing on smaller regions of the image at a
time instead of full images. We can then predict different
relative poses for each local region, instead of a single pose
P for the whole dynamic scene. We thus propose to average
the objective (Eq. 3) over a set of regions R, extracted with
sliding windows:

Lnon-rigid =
1

|D||R| ∑
(Is, It)∈D

∑
r∈R

∣∣It−Ψ(Is, Pr, D)
∣∣
M ·1r

, (6)

where we element-wise multiply (·) the mask M with an
indicator function 1r, which is 1 inside the region r and 0
outside of it. Pr denotes the corresponding pose, extracted
from a pose map P at the center of the region. The dense
map of pose predictions P fits naturally into the CNN-based
architecture, in the same way as the depth predictions D.

While it achieves our goal of a locally-rigid model, Eq. 6
is very inefficient (by summing over many zeros), and
an efficient implementation would require customizing the
differentiable warp operator Ψ. However, we can ensure an
easy implementation with no modification to Ψ by using
an operator that extracts patches in a sliding window, and
concatenates them as samples before they are passed on to Ψ.
This tiling operator, also known as im2row, is used in some
implementations of convolutions. We can write it succinctly,
for an input with c channels and spatial dimensions (w, h),
as t : Rc×w×h 7→ Rb×c×k×k:

ti+ jw, :, :, :(X) = X:,si:si+k,s j:s j+k (7)

where : is the tensor slice operator, the patches are k×k, and

the stride is s. Eq. 6 then becomes:

Lnon-rigid = Lrigid
(
D′, vec(P), t(D), t(M)

)
,

D′ =
{(

t(Is), t(It)
)

: (Is, It) ∈D
}
,

(8)

which effectively amounts to applying the tiling operator t to
all image-sized inputs of the original rigid-model objective
(Eq. 3), and vectorizing the pose map P ∈ R6×w×h so that
the spatial dimensions correspond to the batch dimension
(vec(P) ∈ Rwh×6). Since the kernel size k is unknown,
in practice we repeat the objective for several values of
k, corresponding to different object sizes. Our proposed
inclusion of the tiling operators is illustrated in Fig. 1.

B. Object segmentation

As discussed in Sec. IV, a fully non-rigid model contains
too many degrees-of-freedom. Another issue is that regions
defined by square sliding windows (Eq. 6) are too coarse
to accurately delineate objects’ boundaries. We propose to
solve both issues at once by using the predicted mask M to
partition the pixels into moving objects (M ' 1) and static
background (M ' 0):

Lsegm = Lnon-rigid +Lrigid(D,Pbg,D,1−M),

Pbg =
1

wh ∑
wh
i j (1−Mi j)Pi j,

(9)

where Pbg is the background pose, obtained by averaging the
pose of all background pixels. Unfortunately, since the non-
rigid model is more expressive than the rigid one, assigning
all pixels to the former will always attain a lower error. To
prevent this trivial solution, we modify the regularization
term (Eq. 3) to encourage a constant area of foreground
pixels in a training batch. We consider that the top 10% of



Fig. 2: Predicted 3D meshes and segmentations on the EPIC-Kitchens test set with our proposed unsupervised model.
Contours of constant height are shown as lines (higher values are brighter). Note the correct geometry of the sink (left
panel) and bottle cap (right panel). A failure mode is also visible on the right panel (back wall is distorted in the top-right).
Object masks are tinted red; normally corresponding to moving hands or manipulated objects.

the predictions M correspond to pixels with moving objects
(M ' 1), and the rest to background (M ' 0), penalizing the
distance to these target values:

Lreg’ = ‖sort(vec(M))−u‖2 (10)

where sort operates in descending order, and u is a vector
where the first ρ% of the elements are 1 and the rest are 0.
This “constant area” soft constraint is inspired by a similar
approach used for visualizing salient regions in deep network
interpretability [27], and we found it to be an effective strat-
egy to ensure a correct proportion of object and background
pixels. Our overall objective is then minω Lsegm +λLreg’, in
analogy to Sec. III as also elaborated in Fig. 1.

V. EXPERIMENTS

We conducted extensive experiments to validate our ap-
proach. The tasks we focused on were visual odometry,
monocular depth estimation, and 6D motion segmentation.

A. Experimental Setup.

Datasets. We evaluate the proposed approach on two dif-
ferent large-scale datasets. The first one is the challeng-
ing autonomous driving benchmark KITTI [9]. For the
depth estimation, we use the training split defined by Eigen
et al. [28]. For evaluating the performance of the visual
odometry, we use the KITTI Odometry dataset, training on
sequences 00− 08 and testing on 09− 10. For the second
dataset, we used EPIC-Kitchens [8], which is collected
under various indoor kitchen scenarios, and is the largest
dataset for egocentric vision. It contains 32 kitchens crossing
4 cities, totalling 55 hours of video. It captures rich non-rigid
dynamic motions. Some examples are shown in Fig. 5. As
the original frame rate of the videos is 60 FPS, to reduce
the redundancy, we sample the dataset at every 4 frames,
resulting in a dataset of around 120k images. Among them,
100k images are used for training, and the rest for testing.
The dataset does not provide ground-truth depth, camera
poses and intrinsics. We learn to recover all of them by
unsupervised end-to-end learning.
Training setup. Our training procedure is exactly the same
as for the SfMLearner [4], except with the non-rigid model
we propose (Sec. IV). We used a ResNet-50 as the backbone
CNN, and apply the same TV-norm (Sec. III) to both
depth (D) and pose (P) maps. The only other improvements

are depth mean normalizaton and backbone initialization
according to Gordon et al. [29], as well as disabling the
multi-scale prediction, which does not seem beneficial.

B. Overall Performance.

Pose estimation performance. Our sequential pose estima-
tion (visual odometry) performance is reported in table I.
We compare our method with a traditional monocular SLAM
system, ORB-SLAM (full) [35], as well as its local version,
ORB-SLAM (short), which uses 5-frame snippets. We also
compare with the SfMLearner [4] and several recent propos-
als [30], [32], [20], [31], [23], [34]. As can be seen in table I,
our method outperforms all the other methods. This includes
a traditional SLAM pipeline that draws from many years of
careful engineering and manual tuning (ORB-SLAM). It is
worth mentioning that our method is not explicitly trained
for visual odometry, yet it is a useful by-product of training.
Regarding the deep learning based approaches, our camera
motion estimator outperforms the original SfMLearner [4]
by a large margin, and recent competing approaches by nar-
rower but still significant margins. We include the standard
deviations over several runs in table I for additional context.
Qualitative results on visual odometry. We visualize the
predicted camera trajectories in Fig. 4a and 4b, for several
algorithms, on two KITTI test sequences (09 and 10, re-
spectively). All trajectories are registered w.r.t. the ground
truth as standard [36]. It is apparent that the trajectories
predicted by our method very accurately follows the ground
truth. While other methods can also get close to the ground
truth trajectory (e.g. SC-SFM in Fig. 4a and ORB-SLAM in
Fig. 4b), no other can achieve the same accurate performance
simultaneously on both settings.
Depth estimation performance. We report the result for
depth estimation in table II. The columns are relative error
and its square, root-mean-squared error (RMSE) and its loga-
rithm, as well as the accuracy at 3 given depth thresholds. We
include several state-of-the-art approaches in the comparison,
including supervised methods [28], [37] and unsupervised
stereo-based methods [21], [3], which are not comparable
but present an informative upper bound on performance. We
do not include in the comparison works with significantly
different protocols, such as 3DPackNet [26] which uses
higher-resolution images and 3D CNNs, and other works
with higher amounts of supervision. These interesting de-



Fig. 3: Visualisation of depth estimates for our method, including an ablation without the non-rigid component, and two
other methods, including one with access to stereo information [21]. Our method can accurately capture moving cars and
fine details such as traffic signs and poles.

Method Absolute Trajectory Error
sequence 09 sequence 10

Mean Odometry 0.032 ± 0.026 0.028 ± 0.023
ORB-SLAM (short) 0.064 ± 0.141 0.064 ± 0.130
ORB-SLAM (full) 0.014 ± 0.008 0.012 ± 0.011
Zhou et al. [4] 0.021 ± 0.017 0.020 ± 0.015
DF-Net [30] 0.017 ± 0.007 0.015 ± 0.009
Monodepth2 [29] 0.017 ± 0.008 0.015 ± 0.010
Zhou et al. [4] (new) 0.016 ± 0.009 0.013 ± 0.009
Bian et al. [31] 0.016 ± 0.007 0.015 ± 0.015
Klodt et al. [23] 0.014 ± 0.007 0.013 ± 0.009
Mahjourian et al. [32] 0.013 ± 0.010 0.012 ± 0.011
EPC++ [33] 0.013 ± 0.007 0.012 ± 0.008
GeoNet [20] 0.012 ± 0.007 0.012 ± 0.009
CC [34] 0.012 ± 0.007 0.012 ± 0.009

Ours 0.011 ± 0.005 0.010 ± 0.007

TABLE I: Absolute Trajectory Error (ATE) on
the KITTI odometry test split averaged over all
5-frame snippets. Our approach outperforms all
others, including a traditional SLAM pipeline.

(a) Testing sequence 09 (b) Testing sequence 10
Fig. 4: Qualitative state-of-the-art comparison of the visual odometry
results on the full testing sequences 09 and 10 of the KITTI odometry
dataset.

velopments are complementary to ours, and thus outside of
the scope of this paper. All methods are compared with
raw ground truth depth, following recent protocols [29],
[26]. We can observe that our method achieves the best
performance out of all unsupervised methods, even beating
several supervised ones, on almost all metrics. We show
two variants of our method, using ResNet-18 and ResNet-
50 backbone CNNs, which highlights that the performance
gains are not solely due to an increase in capacity, since
most methods have comparable backbones. On the other
hand, it also reveals that our model is expressive enough to
afford some gains when increasing the capacity to ResNet-
50. More importantly, our method achieves clearly better
results compared with two recent works, i.e. Struct2Depth [5]
and Tosi et al. [6], which use explicit semantic labels to guide
the learning of object motion, demonstrating the benefits of
unsupervised segmentation.

C. Ablation Study and Qualitative Results.

Ablative study. Although our model adds relatively few ele-
ments to view synthesis, it is important to know their relative

impact on performance. We show the performance of our
system with the addition of each element in tables III-IV. It is
apparent that the biggest boost comes from adding our non-
rigid model, especially in visual odometry performance. We
also show a similar breakdown, but adding our improvements
to the original SfMLearner system [4], which has a weaker
backbone CNN and no depth normalization. This shows that
the benefits of our non-rigid model are complementary to
other improvements, yet very significant.

Qualitative results on depth. Fig. 3 shows a direct com-
parison of the depth estimates from our method, the most
comparable baseline by Zhou et al. [4], and a stereo-based
method [3]. Our method recovers much finer details, com-
pared to a rigid-world model (4th column). It is also interest-
ing to compare the level of detail with the stereo method (3rd
column), which achieves better error metrics (table II), but
has relatively inconsistent fine details. Ours seems to strike
a good balance between capturing the high-level layout and
small-scale features. We also show qualitative results of our
method in EPIC-Kitchens, for which there is no ground truth,
in Fig. 5. Despite the challenges of the quick camera and



Fig. 5: Qualitative examples of our unsupervised depth estimation on the EPIC-Kitchens dataset. Despite the fast, non-rigid
motions, we can recover detailed structures, such as the tabletop objects.

TABLE II: Quantitative comparison of depth estimation performance among several methods from the literature, on the
KITTI raw dataset (Eigen et al. [28] testing split). We show some supervised (denoted ‘D’) and stereo (‘S’) methods for
reference, but a fair comparison is only with monocular methods (‘M’) trained with video (‘V’). Our method outperforms
others in most metrics, even when using a ResNet-18 backbone with much fewer parameters.

Method Setting Error (lower is better) Accuracy (higher is better)
rel sq rel rmse rmse (log) δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [28] M + D 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Liu et al. [37] M + D 0.202 1.614 6.523 0.275 0.678 0.895 0.965
MS-CRF [38] M + D 0.125 0.899 4.685 - 0.816 0.951 0.983
AdaDepth [39] S 0.203 1.734 6.251 0.284 0.687 0.899 0.958
Garg et al. [3] S 0.169 1.080 5.104 0.273 0.740 0.904 0.962
Godard et al. et al. [21] S 0.124 1.076 5.311 0.219 0.847 0.942 0.973
Kuznietsov et al. [40] S + D 0.113 0.741 4.621 0.189 0.862 0.960 0.986

Zhou et al. [4] M + V 0.208 1.768 6.858 0.283 0.678 0.885 0.957
Yang et al. [41] M + V 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Mahjourian [32] M + V 0.163 1.240 6.220 0.250 0.762 0.916 0.968
Geonet (ResNet) [20] M + V 0.155 1.296 5.857 0.233 0.793 0.931 0.973
Wang et al. [42] M + V 0.151 1.257 5.583 0.228 0.810 0.936 0.974
DF-Net [30] M + V 0.150 1.124 5.507 0.223 0.806 0.933 0.973
Struct2Depth [5] M + V 0.141 1.026 5.291 0.215 0.816 0.945 0.979
CC (ResNet) [34] M + V 0.140 1.070 5.326 0.217 0.826 0.941 0.975
Bian et al. [31] M + V 0.128 1.047 5.234 0.208 0.846 0.947 0.976
Gordon et al. [29] M + V 0.128 0.959 5.230 – – – –
Tosi et al. [6] M + V 0.125 0.805 4.795 0.195 0.849 0.955 0.983
Monodepth2 [43] M + V 0.115 0.882 4.701 0.190 0.879 0.961 0.982

Ours (ResNet-18) M + V 0.105 0.889 4.780 0.182 0.884 0.961 0.982
Ours (ResNet-50) M + V 0.103 0.881 4.763 0.179 0.889 0.964 0.984

object motions in this setting, the quality of the recovered
depths is apparent, making it possible to identify individual
small objects and fine geometry.
Qualitative results on object discovery and motion pre-
diction. Since our proposed method can predict relative
poses (6D motion) densely for the whole image and sep-
arate foreground pixels (with independent motions) from
static background pixels (with a single coherent motion),
it should be able to discover moving objects in the image
automatically. We validate this idea by binarizing the mask
M (with a threshold of 0.7 and ρ% as 10%), and overlaying
it on the original data. The resulting segmentations in EPIC-
Kitchens can be visualized in Fig. 2, along with the projected
3D geometry. We can observe the correct segmentation and
clustering of the hands, and of objects as they are being held.
We show more visualizations of the motion prediction in the
supplementary video material.

VI. CONCLUSION

We have proposed a simple approach to view synthesis
for self-supervised learning, which leverages a successful
rigid-world model and augments it with a locally-rigid
model instead. This is done by strategic placement of tiling
operators within the network, which is both efficient and
produces highly consistent depth and pose estimates. Our
change enables unsupervised object discovery by motion
segmentation, and allows associating 3D pose and 6D motion
to different objects in the scene. We also demonstrated very
competitive performance in unsupervised visual odometry
and monocular depth estimation compared with state-of-the-
art results. We hope that our contribution enables a new
class of non-rigid SLAM algorithms, that continue the trend
towards truly holistic scene understanding.
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Method rel sq rel rmse

SfMLearner [4] 0.208 1.768 6.858
SfMLearner + our non-rigid model 0.173 1.302 6.252
+ regularization (TV-norm) 0.165 1.301 6.225

Our rigid model (Eq. 3) 0.121 1.115 5.285
Our non-rigid model (Eq. 8) 0.108 0.899 4.788
+ regularization (TV-norm) 0.107 0.895 4.786
+ segmentation (Eq. 9-10) (full system) 0.105 0.889 4.780

TABLE III: Ablation study on monocular depth esti-
mation (error). See Sec. V for details.

Method seq. 09 (ATE) seq. 10 (ATE)

SfMLearner[4] 0.021 ± 0.017 0.020 ± 0.015
SfMLearner + our non-rigid model 0.012 ± 0.007 0.011 ± 0.008
+ regularization (TV-norm) 0.011 ± 0.005 0.011 ± 0.007

Our rigid model (Eq. 3) 0.016 ± 0.012 0.015 ± 0.013
Our non-rigid model (Eq. 8) 0.013 ± 0.006 0.011 ± 0.010
+ regularization (TV-norm) 0.012 ± 0.006 0.011 ± 0.009
+ segmentation (Eq. 9-10) (full system) 0.011 ± 0.005 0.010 ± 0.007

TABLE IV: Ablation study on visual odometry (Absolute Trajectory
Error and std. dev.). See Sec. V for details.
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