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Abstract

Standard semantic segmentation models owe their success
to curated datasets with a fixed set of semantic categories,
without contemplating the possibility of identifying unknown
objects from novel categories. Existing methods in outlier
detection suffer from a lack of smoothness and objectness
in their predictions, due to limitations of the per-pixel clas-
sification paradigm. Furthermore, additional training for
detecting outliers harms the performance of known classes.
In this paper, we explore another paradigm with region-level
classification to better segment unknown objects. We show
that the object queries in mask classification tend to behave
like one vs. all classifiers. Based on this finding, we propose
a novel outlier scoring function called RbA by defining the
event of being an outlier as being rejected by all known
classes. Our extensive experiments show that mask clas-
sification improves the performance of the existing outlier
detection methods, and the best results are achieved with
the proposed RbA. We also propose an objective to optimize
RbA using minimal outlier supervision. Further fine-tuning
with outliers improves the unknown performance, and unlike
previous methods, it does not degrade the inlier performance.
Project page: https://kuis-ai.github.io/RbA

1. Introduction
We address the problem of semantic segmentation of un-

known categories. Detecting novel objects, for example, in
front of a self-driving vehicle, is crucial for safety yet very
challenging. The distribution of potential objects on the road
has a long tail of unknowns such as wild animals, vehicle
debris, litter, etc., manifesting in small quantities on the exist-
ing datasets [73, 7, 18]. The diversity of unknowns in terms
of appearance, size, and location adds to the difficulty. In
addition to the challenges of data, deep learning has evolved
around the closed-set assumption. Most existing models for
category prediction owe their success to curated datasets
with a fixed set of semantic categories. These models fail in
the open-set case by over-confidently assigning the labels of
known classes to unknowns [33, 58].

PEBAL

DenseHybrid RbA (Ours)

Figure 1: Preserving objectness and eliminating noise.
While state-of-the-art methods PEBAL [65] and DenseHy-
brid [25] suffer from a lack of smoothness and objectness
with high false positive rates, our method RbA clearly seg-
ments the unknown objects and reduces false positives by
eliminating uncertainty at semantic boundaries and in am-
biguous background regions.

The existing approaches to segmenting unknowns can be
divided into two depending on whether they use supervi-
sion for unknown objects or not. In either case, the model
has access to known classes during training, i.e. inlier or
in-distribution, and the goal is to identify the pixels belong-
ing to an unknown class, i.e. anomalous, outlier, or out-of-
distribution (OoD). Earlier approaches resort to an ensemble
of models [41] or Monte Carlo dropout [23] which require
multiple forward passes, therefore costly in practice. More
recent approaches use the maximum class probability [35]
predicted by the model as a measure of its confidence. How-
ever, this approach requires the probability predictions to
be calibrated, which is not guaranteed [64, 58, 26, 54, 39].
In the supervised case, the model can utilize outlier data to
learn a discriminative representation, however, outlier data is
limited. Typically, another dataset from a different domain
is used for this purpose [12], or outlier objects are artificially
added to driving images [25, 65].

The existing methods in outlier detection suffer from a
lack of smoothness and objectness in the OoD predictions
as shown in Fig. 1. This is mainly due to the limitations
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Figure 2: Overview. This figure provides an illustration of
our proposed outlier scoring function RbA and the objective
to optimize it as defined in (6). The class logit scores L are
aggregated as the product of region class probabilities P and
mask predictions M pooled over all regions. We define the
RbA as the probability of not being assigned to any of the
known classes. With the proposed objective, we push the
probabilities of known classes down, in the outlier pixels.

of the per-pixel classification paradigm that previous OoD
methods are built on. In this paper, we explore another
paradigm with region-level classification to better segment
objects. To that end, we use mask-classification models,
such as Mask2Former [15] that are trained to predict regions
and then classify each region rather than individual pixels.
This endows our method with spatial smoothness, learned
by region-level supervision. We discover the properties of
this family of models which allow better calibration of confi-
dence values. Then, we exploit these properties to boost the
performance of the existing OoD methods that rely on pre-
dicted class scores such as max logit [34] and energy-based
ones [25, 65, 50].

The existing methods also suffer from high false positive
rates due to failing to separate the sources of uncertainty, es-
pecially on datasets in the wild such as Road Anomaly [49].
For example, on the boundaries, segmentation models typi-
cally predict weak scores for the two inlier classes separated
by the boundary, causing these regions to be confused as
OoD by score-based methods [34]. Based on exploring the
behavior of object queries in mask classification, we find
that most of the object queries tend to behave like one vs.
all classifiers. Consequently, we propose a novel outlier
scoring function based on this one vs. all behavior of object
queries. We define the event of a pixel being an outlier as be-
ing rejected by all known classes. In other words, we define
being an outlier as a complementary event whose probability
can be expressed in terms of the known class probabilities.
We show that this scoring function can eliminate irrelevant
sources of uncertainty as in the case of boundaries, resulting
in a considerably lower false positive rate on all datasets.

The state-of-the-art methods in OoD [25, 65] utilize out-
lier data for supervision. While better unknown segmen-
tation can be achieved, it comes at the expense of lower

closed-set performance. Unfortunately, this unintended con-
sequence is not desirable since the primary objective of
unknown segmentation is to identify unknowns while still
accurately recognizing known classes without compromising
the inlier performance.

We propose an objective to optimize the proposed out-
lier scoring function using a limited amount of outlier data.
By fine-tuning a very small portion of the model with this
objective, our method outperforms the state-of-the-art on
challenging datasets with high distribution shifts such as
Road Anomaly [49] and SMIYC [11]. Notably, we achieve
this without affecting the closed-set performance. Our con-
tributions can be summarized as follows:

• We postulate and study the inherent ability of mask
classification models to express uncertainty, and use this
strength to boost the performance of several existing
OoD segmentation methods.

• Based on our finding that object queries behave approx-
imately as one vs. all classifiers, we propose a novel
outlier scoring function that represents the probabil-
ity of being an outlier as not being any of the known
classes. The proposed scoring function helps to elim-
inate uncertainty in ambiguous inlier regions such as
semantic boundaries.

• We propose a loss function that directly optimizes our
proposed scoring function using minimal outlier data.
The proposed objective exceeds the state-of-the-art by
only fine-tuning a very small portion of the model with-
out affecting the closed-set performance.

2. Related Work

Semantic Segmentation Paradigms: Since the success
of Fully Convolutional Networks (FCN) [62], semantic seg-
mentation architectures have revolved around the per-pixel
classification paradigm. This paradigm has been extensively
studied to increase the closed-set performance with various
convolution and pooling operations [13, 14, 19, 80, 71], and
by aggregating multi-scale contextual information [74, 75].
Recent work shifted towards transformer-based architec-
tures [70, 63, 76, 82, 72] and attention mechanisms [29,
43, 81, 30, 44, 37, 22].

On the other hand, mask classification has been mainly
adopted by instance segmentation and object detection mod-
els [31, 28, 8] since it allows pixels to belong to multiple
proposals and provides the flexibility to detect a variable
number of objects in the scene. Max-DeepLab [67] employs
mask classification for panoptic segmentation but with many
auxiliary losses. Although some earlier efforts have been
made to apply mask classification to semantic segmenta-
tion [9, 28], they were quickly outperformed by the per-pixel
methods until recently. MaskFormer variants [16, 15] apply
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Figure 3: Masking object queries. We show the impact on
per-class IoU on Cityscapes [18] when using two types of
masking: hard masking without any interactions between
the queries (top) and soft masking by allowing interactions
in the transformer decoder (middle) compared to the original
model without masking (bottom). The constant color in
most columns shows that most of the object queries can
independently segment their particular classes.

query-based mask classification and attention to obtain a
unified segmentation model which shows competitive perfor-
mance with specialized semantic and instance segmentation
architectures across benchmarks [47, 18, 83, 57].

Unsupervised Anomaly Segmentation: Unsupervised
methods utilize their knowledge about inlier data to de-
tect anomalies at inference time. Early work measures un-
certainty based on the observation that anomaly samples
typically result in low-confidence predictions. The uncer-
tainty of a model can be estimated through maximum soft-
max probabilities [35, 46], ensembles [41], Bayesian ap-
proximation [55], Monte Carlo dropout [23], or by learn-
ing to estimate its confidence [20]. However, posterior
probabilities of a closed-set model are not necessarily cali-
brated, leading to overconfident predictions on unseen cat-
egories [64, 58, 26, 54, 39]. Therefore, follow-up work
focuses on making a clear distinction between inliers and
outliers by using true class probabilities [17], unnormalized
logits instead of softmax probabilities [34], standardized
class-wise logits [40], and the distance to learned prototypes
of known classes [10]. Overall, unsupervised approaches
are typically efficient without any extra training but they are
inherently limited to which extent they can separate inliers
and outliers due to a lack of supervision with outlier data.

Deep generative models are also used for unsupervised
anomaly segmentation. Early methods are primarily based
on density estimation [42, 59] while subsequent works focus
on reconstruction. Several works rely on the predicted seg-
mentation maps to resynthesize [49, 68, 27, 66] or inpaint
the inputs [48] and measure discrepancy with comparison
networks. Others apply localized adversarial attacks [1], syn-
thesize negatives using normalizing flows [24], or combine
Gaussian mixture models with discriminative representation
learning [45]. Generative methods are typically imprac-
tical for real-time safety-critical applications due to high
computational costs and long inference times. Additional

comparison modules and the change in input distributions
require extra training. Moreover, synthesized unknowns
often do not generalize well to real anomalies [24]. Sev-
eral works [56, 61, 79] show that generative models tend to
estimate high likelihoods on out-of-distribution samples.

Anomaly Segmentation with Outlier Supervision: Out-
of-distribution data can be used to regularize the model’s
feature space by learning a representation of unknowns. With
the increase in the availability of wide-range datasets, initial
approaches utilize generic datasets such as ImageNet [60]
for OoD. Given data, OoD detection can be simply treated as
binary classification [2, 3]. Outlier data can also be used to
estimate the distributional uncertainty of OoD samples [52]
or to fine-tune parametrized OoD detectors [36]. The energy
score has been proposed as a better alternative to softmax in
terms of separation [50]. SynBoost [5] is a supervised image
resynthesis method that treats void regions as anomalies to
obtain an uncertainty signal.

Recent work uses a subset of COCO [47] or ADE20K
[83], either as entire images [12] or after cut-and-paste
into the inlier scenes [65, 25]. Meta-OoD [12] maxi-
mizes the entropy on outliers, whereas PEBAL [65] learns
adaptive energy-based penalties by abstention learning.
Combining likelihood and posterior evaluation, DenseHy-
brid [25] achieves state-of-the-art results. However, for each
benchmark, different models are fine-tuned using multiple
datasets [83, 57, 78] with high distribution shifts, resulting
in a higher degree of supervision and variety. Our model, on
the other hand, can achieve better performance across bench-
marks by using the same model and only a small subset of
COCO [47] for fine-tuning.

One vs. All Classification: Previous work trains one vs.
all classifiers for unknown segmentation [21, 4] in addition
to a standard multi-class classifier. The class probabilities
obtained by the one vs. all classifiers are merely used for cali-
brating the multi-class classifier. The outlier scoring function
is calculated as the negative maximum class probability of
the calibrated probabilities. On the contrary, our method
utilizes the implicit one vs. all behavior of mask classifiers
for explicitly defining the probability of being an outlier.

3. Methodology

In this work, we address the limitations of the existing
OoD methods by using mask classification. We first perform
an analysis of the mask classification models. Then, based
on our analysis, we propose a novel scoring function to
exploit the implicit one vs. all behavior in these models. We
mathematically define the probability of being an outlier
probability as the “none of the above” option for the model.
Finally, we propose a training objective to optimize our
proposed scoring function with minimal outlier data.



3.1. Mask Classification

We build our method on top of the Mask2Former ar-
chitecture [15], which is an improved version of the initial
MaskFormer [16]. We give only a brief overview to make the
discussion self-contained; please refer to Cheng et al. [15]
for details. Mask2Former consists of three main parts: the
backbone, the pixel decoder, and the transformer decoder.
The backbone processes the input image x ∈ R3×H×W

to extract features at multiple scales. Then, the pixel de-
coder further processes the multi-scale features to produce
high-resolution per-pixel features F(x) ∈ RCp×H×W . The
transformer decoder takes the resulting multi-scale features
{fi}Di=1, where D is number of scales, as well as N learnable
object queries Q ∈ RN×Cq , where Cp and Cq denote the
embedding dimensions. At each layer of the transformer
decoder, object queries are refined by interacting with each
other and with one of the scales fi in a round-robin order.

The refined object queries are first processed with a 3-
layer MLP, resulting in Qp ∈ RN×Cp to predict N regions.
The binary masks for all regions are obtained by multiplying
Qp with pixel features F and applying a sigmoid σ to the
result:

M(x) = σ(Qp F(x)) (1)

M(x) ∈ RN×H×W represents the membership score of
each pixel belonging to a region. In parallel, refined object
queries are fed to a linear layer followed by softmax to
produce posterior class probabilities P(x) ∈ [0, 1]N×K of
K classes.

In contrast to per-pixel semantic segmentation, the ground
truth masks are partitioned into multiple binary masks such
that each mask contains all the pixels that belong to a class.
Then, bipartite matching is used to match every ground truth
mask to an object query using region prediction and classifi-
cation losses as the cost. For region prediction, a weighted
combination of dice loss [53] and binary cross-entropy is
applied to the binary mask predictions. For classification,
cross-entropy loss is used. In inference, the class scores or
logits L(x) ∈ RK×H×W are calculated as the product of
mask predictions with class predictions by broadcasting the
class prediction to all the pixels within the region:

L(x) =

N∑
n=1

Pn(x)Mn(x) (2)

3.2. Independence of Object Queries

The logit term L as defined in Eq. 2 has a deeper inter-
pretation because of its structure. In essence, L aggregates
weighted votes over all object queries to decide whether
the pixel belongs to a certain class. During training, the
ground truth binary map of each class is matched to an ob-
ject query using bipartite matching. Therefore, we find that
object queries specialize in predicting a specific class after

convergence. We empirically verify this behavior on another
driving dataset (after training on Cityscapes), the validation
set of BDD100K [73]. We identify which class each object
query specializes in by counting how many times it predicts a
certain class with high confidence, e.g. greater than 98%, see
Supplementary for visualization of this specialized behavior.

After identifying which object query predicts which class,
we test their independence, i.e. the ability of each object
query to predict its class without relying on other object
queries. To evaluate the predictions of class k, we mask
out all but its specialized query. We do this in one of two
ways: 1) before the transformer decoder (♣ in Fig. 2), where
each object query only interacts with the image features and
not with each other (hard masking), or 2) after the trans-
former decoder (♠ in Fig. 2), allowing queries to interact
with each other weakly (soft masking). In both cases, only
the specialized query is used to predict the mask and class.

Fig. 3 shows per-class IoU scores on Cityscapes [18]
using both strategies compared to the original model without
any masking. We observe that the performance in most of
the classes is not affected compared to the original model.
The drop in performance occurs only in rare classes, such as
train, truck, or bus, indicating that their object queries rely
on other queries in prediction, which explains the slightly
better performance of soft masking than hard masking. This
behavior of object queries resembles multiple independent
binary classifiers, implicitly embedded in a single model.
Note that this is only for analysis purposes and not part of
the proposed method.

3.3. Rejected by All (RbA) Scoring Function

Inspired by the independent behavior of object queries,
we propose to model the prediction of each class as an in-
dependent binary classification problem. We consider it as
K one vs. all classifiers where the predicted score for each
class is independently modeled as follows:

p(y = k|x) = σ(Lk(x)) (3)

where y ∈ KH×W is a random variable representing the
predicted class label over a predefined set of known classes
K = {1, . . . ,K} and σ is a normalization function applied
to per class logits to map them to a probability, i.e. a value
between 0 and 1. Based on this definition, we assume that
the latent space is partitioned into K + 1 mutually exclusive
and exhaustive regions, such that the label K + 1 represents
the region where the outliers reside, rejected by all other
known classes. By assuming the mutual exclusiveness of
per-class probabilities for a given input, we can define the
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Figure 4: Categorizing the behavior of logits. Outlier pixels receive extremely low votes from object queries (a). Inlier pixels
receive a high vote from a single object query (b). Boundary pixels separating two inlier classes receive moderate votes from
both object queries (c). Ambiguous regions receive weak votes from multiple object queries (d). Clustering clearly outlines
these four behaviors of logits (e). Pixels in (e) are color-coded with the same colors of the respective histograms (a-d).

probability map of an input x being an outlier as follows:

p(y = K + 1|x) = 1− p
(
∪K
k=1y = k|x

)
= 1−

K∑
k=1

p(y = k|x)

= 1−
K∑

k=1

σ(Lk(x))

(4)

Dropping the constant 1 (which does not affect the optimiza-
tion), we define our outlier scoring function RbA:

RbA(x) = −
K∑

k=1

σ(Lk(x)) (5)

We choose σ to be the tanh function to map Lk > 0 more
uniformly to the range [0, 1].

3.4. Fine-tuning with Minimal Outlier Supervision

We propose to regularize our scoring function with super-
vision from a small amount of synthetically created outlier
data. Our goal is to improve the OoD segmentation while
preserving the closed-set performance. Without retraining
the entire model, we only fine-tune the mask prediction MLP
and classification layer after the transformer decoder (see
Supplementary), which constitutes only 0.21% of the to-
tal model parameters. For OoD data, we use a modified
version of Anomaly Mix proposed in [65], where objects
from COCO dataset [47] are randomly cut and pasted on
Cityscapes images [18]. We regularize the scores by max-
imizing RbA for outlier pixels, with a squared hinge loss.
This is also equivalent to suppressing high-confidence proba-
bilities of known classes for outlier pixels as shown in Fig. 2.

The loss is formally defined as follows:

LRbA =
∑

x∈Ωout

(max(0, α− RbA(x)))
2 (6)

=
∑

x∈Ωout

max

(
0, α+

K∑
k=1

σ(Lk(x))

)2

where Ωout is the set of outlier pixels. We experimentally
set the hyper-parameter α to 5 but we found that any α > 0
works well in practice. See Supplementary for an ablation.

3.5. Analyzing RbA

The term L in Eq. 2 aggregates the independent decisions
of object queries about whether a pixel belongs to a certain
class. Based on this behavior, we can identify several distinct
modes of L. We cluster the logits over classes at each pixel,
i.e. K-dimensional vector, using k-means to characterize
the modes, visualized in Fig. 4e. For an inlier pixel, only a
single object query votes for it with high confidence (Fig. 4b),
whereas true outlier pixels do not receive any votes from
any object query (Fig. 4a). These two modes, especially the
outliers in Fig. 4a, due to the one vs. all behavior, reduces the
overconfidence issue in the existing outlier scoring functions
used in max logit [34] and energy-based methods [25, 65,
50], therefore improve their results (Table 3).

However, there are pixels that disrupt the separability
between the inliers and the outliers which max logit and
energy-based methods fail to capture. For example, pixels
on a boundary between two inlier classes (Fig. 4c) or am-
biguous background pixels (Fig. 4d) end up with a higher
anomaly score than the inliers, causing them to be mistaken
as an outlier. Boundary and ambiguous regions are com-
monly characterized by having more than one weak vote
from object queries. Since RbA aggregates votes from all
classes, summing these weak votes results in a lower outlier
score and hence reduces the false positive rate. Fig. 5 high-
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Figure 5: Visual comparison to the state-of-the-art. We show visualizations of outlier score maps predicted by our method,
RbA compared to the ones predicted by state-of-the-art methods PEBAL [65] and DenseHybrid [25] trained using the same
architecture as the RbA for a fair comparison. The other two methods falsely identify the inlier classes such as person and
bike, which are correctly ignored by the proposed RbA. It is noteworthy that RbA also eliminates the false positives in the
background region, especially at the boundaries separating inliers and better preserves the smoothness of the outlier map
compared to other methods despite being also trained with mask classification.

Method OoD Extra Anomaly Track Obstacle Track

Data Net. AP ↑ FPR ↓ sIoU gt ↑ PPV ↑ mean F1 ↑ AP ↑ FPR ↓ sIoU gt ↑ PPV ↑ mean F1 ↑
Emb. Density[6] ✗ ✗ 37.5 70.8 33.9 20.5 7.9 0.8 46.4 35.6 2.9 2.3
JSRNet[66] ✗ ✓ 33.6 43.9 20.2 29.3 13.7 28.1 28.9 18.6 24.5 11.0
Road Inpain.[48] ✗ ✓ - - - - - 54.1 47.1 57.6 39.5 36.0
Image Resyn.[49] ✗ ✓ 52.3 25.9 39.7 11.0 12.5 37.7 4.7 16.6 20.5 8.4
ObsNet[1] ✗ ✓ 75.4 26.7 44.2 52.6 45.1 - - - - -
NFlowJS[24] ✗ ✓ 56.9 34.7 36.9 18.0 14.9 85.6 0.4 45.5 49.5 50.4
RbA (Ours) ✗ ✗ 86.1 15.9 56.3 41.4 42.0 87.8 3.3 47.4 56.2 50.4

Max. Entropy[44] ✓ ✗ 85.5 15.0 49.2 39.5 28.7 85.1 0.8 47.9 62.6 48.5
DenseHybrid[25] ✓ ✗ 78.0 9.8 54.2 24.1 31.1 87.1 0.2 45.7 50.1 50.7
PEBAL[65] ✓ ✗ 49.1 40.8 38.9 27.2 14.5 5.0 12.7 29.9 7.6 5.5
SynBoost[5] ✓ ✓ 56.4 61.9 34.7 17.8 10.0 71.3 3.2 44.3 41.8 37.6
RbA (Ours) ✓ ✗ 90.9 11.6 55.7 52.1 46.8 91.8 0.5 58.4 58.8 60.9

Table 1: Results on the SMIYC benchmark. We report results on both the anomaly and the obstacle track. Both tracks cover
a wide variety of scenarios and unknown objects. We report both pixel-level (AP, FPR@95) and component-level metrics
(sIoU, PPV, mean F1). We show the results with (lower part) and without (upper part) outlier supervision with the best in bold
and the second best underlined for each. We mark the methods that use OoD data during training or an extra network auxiliary
to the segmentation network.

lights the differences between the anomaly maps predicted
by RbA and the state-of-the-art methods, also trained using
Mask2Former. Note that RbA assigns low outlier scores at
boundaries separating known classes.

4. Experiments

4.1. Datasets

We train the model on Cityscapes [18], which consists
of 2975 training and 500 validation images. It contains 19
classes which are considered as inliers in anomaly segmen-
tation benchmarks. The classes in the dataset can be seen
in Fig. 3. For evaluation, we consider multiple datasets.
First, Segment Me If You Can (SMIYC) benchmark [11]

with two datasets: anomaly track and obstacle track. The
anomaly track has 100 images that contain unknown objects
of various sizes in diverse environments. The obstacle track
contains 412 images with typically small unknown objects
on the road, 85 of which are taken at night and in adverse
weather conditions. Both datasets are characterized by a
high domain shift compared to Cityscapes, making them
particularly challenging. Road Anomaly [49] is an earlier
and smaller version of SMIYC. It consists of 60 images with
diverse objects in diverse environments. We also report re-
sults on the Fishyscapes Lost&Found [6], which has 100
validation and 275 test images. The domain of this dataset is
similar to that of Cityscapes, and the anomalous objects are
mostly small and less diverse compared to other datasets.



Method OoD Extra Road Anomaly FS LaF

Data Net. AUC ↑ AP ↑ FPR ↓ AUC ↑ AP ↑ FPR ↓

MSP (R101) [35] ✗ ✗ 73.76 20.59 68.44 86.99 6.02 45.63
Entropy (R101) [35] ✗ ✗ 75.12 22.38 68.15 88.32 13.91 44.85
Mahalanobis [42] ✗ ✗ 76.73 22.85 59.20 92.51 27.83 30.17
SML [40] ✗ ✗ 81.96 25.82 49.74 96.88 36.55 14.53
GMMSeg (SF) [45] ✗ ✗ 89.37 57.65 44.34 97.83 50.03 12.55
SynthCP [68] ✗ ✓ 76.08 24.86 64.69 88.34 6.54 45.95
RbA (Ours) ✗ ✗ 95.60 78.45 11.83 96.43 60.96 10.63

Maximized Entropy [12] ✓ ✗ - - - 93.06 41.31 37.69
PEBAL [65] ✓ ✗ 88.85 44.41 37.98 98.52 64.43 6.56
SynBoost (WRN38) [5] ✓ ✓ 81.91 38.21 64.75 96.21 60.58 31.02
RbA (Ours) ✓ ✗ 97.99 85.42 6.92 98.62 70.81 6.30

Table 2: Results on Road Anomaly and Fishyscapes LaF. We show the results with (lower part) and without (upper part)
outlier supervision with the best in bold and the second best underlined for each. We report the results of RbA both with and
without outlier supervision. Our method RbA notably improves the results in all metrics on both datasets.

4.2. Experimental Setup

Implementation Details: We follow the setup of [15] for
closed-set training on Cityscapes. We use the Swin-B [51]
architecture as the backbone. Differently, we use only one
decoder layer in the transformer decoder instead of nine (see
Supplementary). For outlier supervision, we fine-tune the
mask prediction MLP and the classification layer for 2K
iterations with a batch size of 16 using the standard loss
functions used in [15] in addition to the RbA loss defined in
Eq. 6. Previous work [65] samples 300 new images every
epoch out of 40K COCO images with objects different than
Cityscapes inliers. Differently, we sample 300 images only
at the beginning and fix them, then at each iteration, an
image is randomly chosen and pasted on inlier images with
probability pout. We experimentally set pout to 0.1.

Evaluation Metrics: For comparison to previous meth-
ods on the Road Anomaly and the Fishyscapes, we report
Average Precision (AP), Area under ROC Curve (AuROC),
and False Positive rate at the threshold of 95% True Positive
Rate (FPR@95). On SMIYC, the public benchmark reports
AP and FPR@95 for per-pixel metrics as well as component-
level metrics that are designed to measure the statistics of
detected objects [11]. Specifically, the proposed metrics aim
at quantifying true positives (TP), false negatives (FN), and
false positives (FP) of detected unknown objects. Please see
the benchmark paper [11] for more details on these metrics.

4.3. Quantitative Results

4.3.1 Segment Me If You Can Benchmark

Table 1 shows the results on anomaly and obstacle tracks of
the public SMIYC benchmark. Without outlier supervision,
RbA outperforms all the models, including those trained
with outlier supervision, in AP while maintaining a compet-
itive FPR@95. In terms of component metrics, the gains

with RbA are more pronounced, which is due to an improved
ability to characterize objectness, compared to the previous
work. With outlier supervision, the performance gap im-
proves with respect to the previous best method consistently
across both tracks: +5.4% and +4.7% in AP and +1.7% and
+10.2% in mean F1 for anomaly and obstacle tracks respec-
tively. DenseHybrid [25] achieves a slightly better FPR@95
on the anomaly and obstacle tracks, but RbA achieves signif-
icantly better AP, +12.9% and +4.7% respectively, and better
performance in all component-level metrics. ObsNet [1] has
impressive performance at the component-level, however,
not at the pixel-level. RbA consistently performs well across
both tracks in both pixel and component-level metrics.

SMIYC is characterized by high domain shift and diver-
sity of objects in terms of size and appearance, making it
particularly challenging. While some methods, like Dense-
Hybrid [25], rely on highly diverse data when fine-tuning,
RbA with mask classification shows that outlier supervision
is not necessary to perform well under domain shift, thereby
surpassing the limitations of the existing methods.

4.3.2 Road Anomaly & Fishyscapes LaF

Table 2 shows the results on the Road Anomaly [49] and
the Fishyscapes Lost and Found (LaF) validation set [6].
Without outlier supervision, RbA improves the state-of-the-
art significantly in almost all metrics on both datasets, even
outperforming methods with outlier supervision in some
metrics. With minimal supervision from a limited number
of outlier objects, we obtain significant performance gains
without hurting the closed-set performance (Table 3).

5. Ablation Study
We ablate our contributions to justify our decision choices

with the scoring function, loss function, and backbone. First,
we show that mask classification improves the performance



of the existing methods in OoD, but RbA better utilizes its
potential. We then report the performance of the squared
hinge loss compared to alternative loss functions. Lastly, we
experiment with different backbones and show that optimiz-
ing for RbA improves the results with different backbones.

Other Methods with Mask Classification: To clearly
demonstrate the effectiveness of our method and decouple it
from the gains obtained by the Mask2Former, we report the
results of other SOTA methods using Mask2Former, includ-
ing PEBAL [65], DenseHybrid [25], and Max Logit [34]
in Table 3. The existing OoD methods perform well with
Mask2Former, for example, the performance of PEBAL sig-
nificantly improves compared to the official results reported
in Table 2. As discussed in Section 3.2, the improvement
comes from reducing the overconfidence issue owing to the
independent behavior of object queries. Our method, RbA,
performs better than the other methods in all metrics. More
importantly, we achieve this performance in OoD without
affecting the closed-set performance, unlike the other meth-
ods such as PEBAL causing a significant drop in mIoU. This
experiment shows that we can better utilize the properties of
mask classification with RbA.

Alternative Loss Functions: We verify our choice of loss
function which is a squared hinge loss by optimizing our
method with other commonly used loss functions. As can be
seen in Table 4, squared hinge loss outperforms other loss
functions. Mean Squared Error (MSE) and L1 result in a
higher false positive rate. We define the OoD as a binary
classification problem and optimize it with BCE by using
the outlier score given by the RbA as the positive class logit.
While it improves the FPR compared to MSE and L1, it
performs worse than the squared hinge loss in all metrics.
Using KL Divergence, we minimize the distance between
class probabilities of outlier pixels from a fixed distribution
with maximum entropy. It performs comparably in FPR but
poorly in AP, especially on the Fishyscapes LaF. Detailed
formulations can be found in Supplementary.

Method mIoU ↑ Road Anomaly FS LaF

AP ↑ FPR ↓ AP ↑ FPR ↓

Max Logit [34] 82.25 77.31 16.90 58.52 22.14
PEBAL [65] 75.32 79.01 7.21 62.67 25.60
DH [25] 80.27 78.57 12.28 36.94 21.12
RbA (Ours) 82.20 85.42 6.92 70.81 6.30

Table 3: Other methods with Mask2Former. We
show the performance of the state-of-the-art methods with
Mask2Former. Our method RbA achieves the best results in
all metrics with a clear margin, without affecting the closed-
set performance, unlike previous methods. The mIoU before
fine-tuning is shown in the first row of the table. The rest of
the models are fine-tuned from the same checkpoint.

Method Road Anomaly FS LaF

AP ↑ FPR ↓ AP ↑ FPR ↓

KL Div. 79.91 11.33 63.58 8.78
MSE 80.71 15.79 69.14 22.06
L1 80.94 15.75 67.19 20.44
BCE 80.66 10.29 64.90 6.89
RbA (Ours) 85.42 6.92 70.81 6.30

Table 4: Ablation study on alternative loss functions. We
compare our loss function based on the squared hinge loss to
other commonly used loss functions. The results show that
our method with squared hinge loss (RbA) performs the best
in terms of OoD segmentation.

Backbone Road Anomaly FS LaF

AP ↑ FPR ↓ AP ↑ FPR ↓

R101 [32] 38.1 / 61.9 82.7 / 37.2 30.1 / 47.1 26.3 / 12.7
WR38 [77] 21.6 / 52.0 90.0 / 43.8 24.8 / 44.6 76.3 / 13.4
MViT [69] 57.2 / 73.1 85.8 / 24.9 47.8 / 63.7 59.8 / 6.2
MixT [70] 65.7 / 78.1 24.6 / 12.4 40.3 / 51.3 23.0 / 17.1
Swin-B [51] 78.5 / 85.4 11.8 / 6.9 61.0 / 70.8 10.6 / 6.3

Table 5: Ablation study on the backbone. We show the
effect of varying the backbone used for feature extraction
on the OoD performance. Comparing the results before and
after fine-tuning with the proposed method, we observe clear
improvements in the performance in all backbones.

Different Backbones: We use the same Mask2Former
model with Swin-B backbone [51] in all our experiments.
In Table 5, we report the results with different backbones
including transformer-based Multiscale ViT (MViT) [69]
and Mix Transformer (MixT) [70] as well as convolutional
WideResnet38 (WR38) [77] and ResNet101 (R101) [32]
backbones. We keep all the other parameters the same as
the default version for a fair comparison. Fine-tuning with
RbA brings consistent improvements in all metrics for all
backbones. While Swin-B performs the best, R101, MViT,
and MixT can still outperform previous methods on Road
Anomaly and achieve competitive results on Fishyscapes
LaF. This experiment shows that the proposed scoring func-
tion improves the performance regardless of the backbone.

6. Open-Set Panoptic Segmentation

We show that RbA can be extended to open-set panoptic
segmentation with slight modifications. We follow the setup
proposed in [38]. We train Mask2Former with ResNet50
backbone for 280K iterations using a batch size of 18.

Outlier Scoring: In order to calculate the RbA score map
for a given input sample in the panoptic setting, we first
calculate RbA the same way as in (5), then we apply dilation
and erosion operations of kernel size 3×3 to reduce the noise
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Figure 6: Qualitative Results on COCO Open-Set Split

Model
Known Metrics Unknown Metrics

PQ SQ RQ PQ SQ RQ

EOSPN [38] 37.4 76.2 46.2 11.3 73.8 15.3
RbA (Ours) 47.0 82.2 56.3 24.8 79.2 31.4

Table 6: Open-set panoptic segmentation results. We show
the results for known and unknown metrics on the open-
set split of COCO dataset. RbA outperforms the baseline
method considerably in all metrics.

from the map. Finally, we extract the connected components
from the score map and consider each component as an
unknown instance.

Dataset: COCO [47] dataset with panoptic annotations is
used for evaluating open-set panoptic segmentation. The
dataset consists of 118K training and 5K validation samples,
containing 80 thing classes and 54 stuff classes. To create the
open-set setting, some classes from the known thing classes
are removed from the training set and used for evaluation
with the unknown metrics. The authors in [38] propose three
different splits depending on the percentage of known classes
removed from the thing classes. We perform the evaluation
on the most difficult split which removes 20% of the known
classes to use as the unknown set.

Results: Following [38], we report the Panoptic Quality
(PQ), Segmentation Quality (SQ), and Recognition Qual-
ity (RQ) computed on known things and stuff classes and
unknown classes separately as shown in Table 6. RbA out-
performs the baseline method EOSPN [38] significantly in
both known and unknown metrics. Fig. 6 shows qualitative
examples on the validation set of open-set COCO.

7. Conclusion and Future Work

In this work, we explore the potential of mask classifi-
cation to segment unknown classes. We show that object
queries behave like one vs. all classifiers and their inde-
pendent behavior reduces the overconfidence issue in the
predicted scores, resulting in improvements in the perfor-
mance of the existing scoring-based methods such as max
logit and energy-based methods. By treating the result of
mask classification as multiple one vs. all classifiers, we
propose a novel outlier scoring function called RbA defined
in terms of known class probabilities. We also propose an
objective to optimize the RbA with limited outlier data, ob-
taining significant performance gains without affecting the
closed-set performance. We show that the RbA eliminates
irrelevant sources of uncertainty, such as inlier boundaries
and ambiguous background regions, leading to a consider-
able decrease in false positive rates. Moreover, our proposed
method can preserve objectness and smoothness due to the
region-level inductive biases learned by the mask classifier.

As this work represents an initial attempt to utilize mask
classification for unknown segmentation, its properties can
be further explored with potential improvements. Given the
increased ability to preserve objectness, open-world incre-
mental learning is one step closer, as unknown masks are
more reliable as a source of supervision. While current ef-
forts are limited to static image datasets, temporal or depth
information can provide important cues to detect unknowns.
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Dubuisson, and Isabelle Bloch. One versus all for deep neu-
ral network incertitude (ovnni) quantification. IEEE Access,
2022. 3

[22] J. Fu, J. Liu, Haijie Tian, Zhiwei Fang, and Hanqing Lu. Dual
attention network for scene segmentation. In CVPR, 2019. 2

[23] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep learn-
ing. In ICML, 2016. 1, 3

[24] Matej Grcic, Petra Bevandi’c, and Sinivsa vSegvi’c. Dense
anomaly detection by robust learning on synthetic negative
data. arXiv.org, 2112.12833, 2021. 3, 6
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