
TRACKING IN STREAMED VIDEO BY UPDATING GLOBALLY OPTIMAL MATCHINGS

João F. Henriques, Rui Caseiro and Jorge Batista

Institute of Systems and Robotics, University of Coimbra

ABSTRACT

Matching methods such as the Hungarian algorithm have recently
made an appearance as an alternative to classical tracking algorithms
in computer vision, since they are able to find the set of tracks that
optimizes well-defined criteria over a given video sequence. How-
ever, despite being globally optimal, they carry a cost: since they
require complete knowledge of the sequence, such methods can-
not work with continuous video streams, a crucial requirement of
realistic video surveillance applications. We were able to use the
recently proposed Dynamic Hungarian Algorithm in an innovative
way, adapting it to the well-known sliding window methodology.
The algorithm is able to run in real-time, while retaining its opti-
mality. We tested our implementation on several datasets, tracking
humans and vehicles, and obtained reliable results using the same
set of parameters on all sequences.

Index Terms— Video surveillance, tracking, real-time, Dy-
namic Hungarian Algorithm

1. INTRODUCTION

Tracking is one of the most deceptively difficult problems in com-
puter vision. This fact is especially jarring when we consider the
effortlessness with which we humans are able to do the same task.
The interest in this problem stems from its direct applications, such
as video surveillance and robot navigation, but also because the most
useful scene understanding tasks have complete, unambiguous ob-
ject trajectories as a prerequisite.

Recent years have seen many developments in this area. Slowly,
the shortcomings of previous methods are being dealt with, as com-
putational resources allow the use of much more complicated algo-
rithms. Knowledge of this evolution is necessary to understand how
the work presented in this paper bridges the gap between two very
different approaches to tracking.

The dominant approach for many years has been based on object
following. Mimicking the inherently causal process that represents
the movement of objects, these methods keep a state that summa-
rizes previous observations and update it recursively with new ob-
servations. Examples are Kalman and particle filters [1], coupled
with many other modules, such as track initializers, split and merge
managers, and different forms of scene reasoning to deal with occlu-
sion [2, 3]. However, notice that they generally assume that, given
enough information about the past, optimal committing decisions
can be made now. The decision-making process is local in time.

An attempt to delay decisions and explore different possibili-
ties was made with Multiple Hypothesis Tracking (MHT) [4], which
sparked many variants and is still widely used. It’s not hard to imag-
ine, though, the combinatorial explosion of considering all the dif-
ferent possibilities in a linear manner. This lead to the question

This work was supported by BRISA, Auto-estradas de Portugal, S.A.

of whether it is possible to explore the hypothesis-space more ef-
ficiently. It turns out it is possible, by resorting to the relatively new
paradigm of globally optimal object matching [5, 6]. Given associa-
tion scores for all possible pairs of detections over time (in this con-
text, a detection is the occurrence of an object within a given frame),
classical methods such as the Hungarian algorithm output the set of
pairs that minimizes the sum of the scores, the optimal matching.
Matchings have the property of no-overlap: a detection is matched
to only one other detection. Taken in sequence they represent tracks,
and so the optimization effectively operates on the hypothesis-space
of all object tracks. Its worst-case time complexity is cubic in the
number of detections.

But their effectiveness comes at a cost. Globally optimal meth-
ods, by their very definition, need access to all the detections at once.
They work on videos of a few seconds or minutes, but are impossi-
ble to employ for continuous streams of video, potentially of many
hours or days in the case of visual surveillance. They also require
that the whole video is captured before any processing can be initi-
ated. Such restrictions clearly rule out any sort of real-time response
to the tracking results, crucial in practical applications.

Over this work, we set out to eliminate these restrictions. With
only very mild and well-understood assumptions, our formulation
uses a sliding window updated with the Dynamic Hungarian Algo-
rithm, which doesn’t compromise the optimality of the method.

2. COMBINATORIAL OPTIMIZATION FRAMEWORK

2.1. Simple matching

The basic framework takes the total set of detections of the whole
video, R = {r1, r2, . . . , rn}, and a cost matrix Cn×n = [cij],
where cij is the cost of associating ri to rj . These costs can be ob-
tained by any combination of measures between detections, such as
color histogram correlation, position and size difference, or proba-
bilistic models (as shown in Section 2.2). Impossible matches are
expressed by infinite costs. This is important, to make sure that only
matches going forward in time are allowed; formally, ti ≥ tj ⇒
cij = ∞, with tk the time instant of rk. Notice that this already
models occlusions, since a detection can be matched to another a
few frames later if it leads to an optimal solution.

Given the matrix C, the Hungarian algorithm (also referred to
as the Munkres algorithm) computes the optimal matching S∗n×n =
[sij], where sij = 1 if ri is matched to rj and 0 otherwise. This
algorithm is referred many times in the literature [7] and there are
numerous implementations available. It minimizes

∑
i

∑
j cijsij ,

thus selecting the set of matches that minimizes the total cost. S∗

univocally represents a set of tracks: a track with m detections Tk =
{ri1 , ri2 , . . . , rim} is defined by the sequence of matches of Eq. 1.

si1i2 = 1, si2i3 = 1, . . . , sim−1im = 1 (1)

It’s important to augment C to model track initiation and ter-

mination, otherwise solutions with these events will be penalized
heavily. A simple solution is presented in Eq. 2. The sub-matrix
Cinit is presented in Eq. 3, and Cterm follows the same structure.
cinit,k and cterm,k hold the costs of initializing and terminating a
track at detection rk, respectively. Matching a detection to one of
these events is just as valid as matching it to another detection.

C′ =

[
C Cterm

Cinit 0n×n

]
(2)

Cinit =

cinit,1 ∞ · · · ∞
∞ cinit,2 · · · ∞
...

...
. . .

...
∞ ∞ · · · cinit,n

 (3)

This formulation is superior to the one used by Stauffer et al.
[5], which only allows initialization or termination of a single track
per source or sink (discrete locations of entry and exit), in the whole
sequence, due to the no-overlap restriction. The formulation above
allows initialization and termination of an arbitrary number of tracks.

2.2. Probabilistic framework

While the approach described previously is effective, the costs are a
bit awkward to work with, since there is no clear way of combining
different metrics (such as color and position differences) in a single
cost. Huang et al. [6] suggested a probabilistic formulation that max-
imizes a sum of log-likelihoods, and by learning the distribution of
each metric with training data, the fusion problem is solved in a natu-
ral way. We use their joint probability Pij , which is simply a product
of likelihoods, assuming mutual independence. The metrics used
in our tracker are position and size differences (modeled using 2D
Gaussians), time difference (modeled with a Bernoulli distribution),
and Region Covariance Matrix (RCM) dissimilarity (modeled with
the half-normal distribution). RCMs [8] were chosen because they
can fuse naturally a number of image features; in our case, color,
gradient and spatial coordinates information.

The model can also use a priori information of the confidence
in each detection, the likelihood P+

i (while the likelihood of a false
alarm is P−i = 1 − P+

i). Based on the formulation of Huang et
al., we model the likelihood of a track Sk with the Markov chain of
probabilities shown in Eq. 4. A track has initiation and termination
terms, detection likelihoods, and link terms between them.

P (Sk) = Pinit,i1 P+
i1

Pi1i2 P+
i2

Pi2i3 (. . .)

P+
im−1

Pim−1im P+
im

Pterm,im (4)

The objective function is to maximize
∏

P (Sk)
∏

P−i , where
the first product is over all tracks Sk, and the second product is over
all rejected detections ri, which don’t belong to any track.

This can be transformed into the costs presented in Eq. 5 to 7.
As shown in [6], solving the matching problem with these costs is
equivalent to optimizing the probabilistic objective function.

cij =

 − log P−i , if i = j

− log

[√
P+

i Pij

√
P+

j

]
, otherwise

(5)

cinit,k = − log

[
Pinit,k

√
P+

k

]
(6)

cterm,k = − log

[
Pterm,k

√
P+

k

]
(7)

2.3. Why a sliding window can’t be used directly

The main issue with methods like the above is that they can only
be applied to contained video segments, since they require full in-
formation to operate. This rules out important applications such as
continuous video surveillance. A sliding window is a popular ap-
proach for continuous operation [9, 2] that restricts processing to a
rolling buffer of the most recent data; for instance, within the last w
frames.

Consider what would happen if the proposed tracker was ap-
plied to the detections of frames 1 to w, obtaining tracks T1; then to
frames 2 to w +1 to obtain tracks T2, and so on, in a manner similar
to most sliding window approaches. Intuitively, the tracks in T1 and
T2 should mostly overlap. By visual inspection, a human can eas-
ily match these tracks, and heuristic methods could do the same job.
However, the assumption that tracks in consecutive windows mostly
overlap is wrong, since the optimal solution for one window can be
very different from the other (consider switched identities, new ob-
jects, deciding whether each detection is a false alarm or not). More
formally, global solutions of similar problems aren’t necessarily sim-
ilar.

Worse, even though we just matched detections in each win-
dow, we still have to match them among windows, which is another
matching problem. Instead of clumsily gluing global matching to
the sliding window approach, we integrate them seamlessly through
the Dynamic Hungarian Algorithm.

3. TRACKING IN STREAMED VIDEO

3.1. The Dynamic Hungarian Algorithm

Given the facts discussed in the previous section, maintaining the
optimal set of tracks as the sliding window advances seems like a
daunting task. However, Mills-Tettey et al. [10] have shown re-
cently that the same basic building blocks of the Hungarian algo-
rithm can be used to repair a solution of a matching problem in the
presence of changed costs. Although their work was intended mainly
for logistics problems, we found that it serves as a sound theoretical
and practical framework for our purposes. This Dynamic Hungarian
Algorithm can repair p rows or columns of costs in O(pn2) time,
where n is the number of detections, typically orders of magnitude
greater than p. Re-building the same solution from scratch would
take O(n3) time. We will now show how it applies to our work.

The speed gain is not the focus of this extension. Tracking with
global methods in streamed video is simply not possible without it.

3.2. Overview

We will refer to each state of the sliding window as an iteration. The
detection ri is said to be inside the window at iteration k, defined
by the time interval [wstart,k, wend,k], if its time instant ti is inside
that interval. The state of the tracker is simply the set of detections in
the window,Rk, and the corresponding cost matrix Ck. When tran-
sitioning to the iteration k + 1, due to the movement of the window,
detections Rnew,k+1 that are ahead in time will enter the window,
and detectionsRrem.,k+1 will leave it. We will repair and maintain
the optimal solution M∗k of each iteration as this happens.1 Section
3.5 describes the storage process and discusses optimality.

1The window can advance any number of frames with each iteration, as
long as there is overlap with the previous window. This doesn’t affect the
solution.

3.3. Integration of new detections

Let n = |Rk−1| and m = |Rnew,k|. First, we update the buffer
with the new detections, as in Eq. 8. The cost matrix is extended
with trivial infinite costs in Eq. 9, which mean that no matches are
possible for the new detections. Since the previous solution M∗k−1

doesn’t match the new detections, it is still optimal for this cost ma-
trix.

R′k = Rk−1 ∪Rnew,k (8)

C1
k =

[
Ck−1 ∞n×m

∞m×n ∞m×m

]
(9)

Of course, the costs related to the new detections are not correct.
The correct costs are given by Eq. 10, where C (I; J) are the costs
of matching detections in the set I to detections in the set J (ie,
C (I; J) = [cij] , ri ∈ I, rj ∈ J). The elements in the lower-
left block are still infinite since they are the costs of matching new
detections to previous detections, which cannot happen because they
always occur later in time.

C2
k =

[
Ck−1 C (Rk−1; Rnew,k)
∞m×n C (Rnew,k; Rnew,k)

]
(10)

The Dynamic Hungarian Algorithm can be used to update the
solution by changing the costs from C1

k to C2
k . Only the right-most

m columns must be updated.

3.4. Removal of detections

Just as new detections enter the window, others will be left behind.
We denote theseRrem.,k, and p = |Rrem.,k|. To maintain the opti-
mal solution, the approach is very similar to the one in the previous
section. The Dynamic Hungarian Algorithm updates the solution
based on the changed costs, from C2

k to C3
k , shown in Eq. 11, where

b = m + n− p.

C3
k =

[
∞p×p ∞p×b

∞b×p Ck

]
(11)

Only the upper p rows have to be updated. Notice that this way
we finally obtain Ck (it’s embedded in C3

k), which will be re-used
in iteration k + 1. This can also be interpreted as removing the rows
and columns from C2

k that correspond to the removed detections.
The detections are removed from the buffer in Eq. 12, and Rk is
now ready to be re-used over the next iteration.

Rk = R′k \ Rrem.,k (12)

This concludes the process of updating the solution dynamically
as the window moves forward. This formulation ensures that the
matching is optimal at the end of every iteration.

3.5. Track commitment and optimality

The matches in the buffer represent only the current best estimate of
the tracks, and may change in future iterations. This means that no
commitment can be made (ie., no match can be considered perma-
nent). But obviously some matches have to be committed at some
point; otherwise the options under consideration (the size of the win-
dow) will grow indefinitely and we’d be no better than with the pre-
vious global method.

The only matches that are no longer subject to change are the
ones left behind by the sliding window, S∗rem.,k (corresponding to

Rrem.,k). They are the ones most distant (in time) from the new
detections, and with a pseudo-Markovian assumption that detections
farther in time are more likely to be independent2, the oldest matches
are also the ones less likely to need revision.

The removed matches S∗rem.,k are stored continually as the final
solution. This also means that larger time windows allow for greater
confidence in the stored matches, since they are even less likely to
need revision when new data arrives, using the same assumption. It
entails a certain degree of trade-off between number of computations
and quality of output, controlled by the size of the time window.

Probably the event that is most likely to violate the Markovian
assumption is the occlusion of an object for an extended period. If an
occlusion period is greater than the window size, the tracker cannot
match the last known detection of the object to the new detection
when it reappears. This should be easy to understand, as the tracker
“forgot” the last state of the object. To account for long occlusions
the window size should be large.

Fortunately, the small amount of computations involved with
each update allows for very large window sizes to be used (when
compared to methods such as MHT), allowing the tracker to com-
pensate for very long occlusions (up to several seconds or minutes).
Also, given the dynamic update of the solution, the solution is al-
ways optimal for the time window over all iterations.

3.6. Optimal tracks

The stored matches are given in Eq. 13. They can be stored to a
growing buffer, for example in a mass storage device. The detections
they refer to,Rrem.,k, can be stored in the same way. Tracks can be
recovered as sequences of matches, as explained in Section 2.1.

S∗ = S∗rem.,1 ∪ S∗rem.,2 ∪ . . . ∪ S∗rem.,N (13)

Table 1: Results for each video sequence.
Video Sequence Tracked Hit Rate Pos. Error

Corridor 7 / 7 0.9825 0.2878
EnterExit...1cor 5 / 5 0.9688 0.1988
WalkBy...1front 5 / 5 0.9929 0.1726

EnterExit...1front 4 / 4 0.9797 0.1199
Highway 47 / 54 0.9676 0.1893

WalkBy...1cor 18 / 20 0.8781 0.2147

4. RESULTS

We applied the tracker to a number of datasets, obtaining the results
presented in Table 1. We pair each detection with the closest detec-
tion in the ground truth, and consider it correct if their overlap area
is over 50%. A track is considered correct if more than 90% of its
detections are also correct. The second column shows the number
of correct tracks, as well as the total number of tracks in the ground
truth. The third column presents the average of the ratio of correct
detections for the correct tracks. The normalized position error ap-
pears in the fourth column. It’s simply the average of the euclidean
distances between detections and their matches in the ground truth.
The distances are normalized to the lengths of the diagonals of the
ground truth bounding boxes, making this measure invariant to size.

2The well-known Markovian assumption is that a state is independent of
all states except for the one immediately preceding it. Our assumption is
much more loose. We only require it to be independent of states preceding it
by a sufficiently large amount of time (or number of state transitions).

The resulting tracks can be seen in Figure 1. The trajectory of
each object on the ground appears in a different color (colors are cy-
cled when the number of objects is large). The tested videos are from
the CAVIAR dataset3, using the supplied labellings as detections, ex-
cept for the Corridor and Highway sequences. The Corridor video
was captured especially for our own use, and the Highway video
was processed with a detector based on foreground segmentation,
currently under development at our laboratory.

The video WalkByShop1cor (CAVIAR) is the most challeng-
ing, since it is rather long (2360 frames) and has many detections
(11318). The cost matrix for such a sequence, using current global
matching schemes, would have more than 500 million elements.
Long occlusions, like ones of the blue and cyan tracks, respectively
in Figures 1a and 1d, passing behind a pillar, are handled correctly.

The tracker’s parameters are left unchanged for all test se-
quences, including the Highway video, which is a testament to the
robustness of this method. The estimated probability of entry or
exit in the scene (Pinit and Pterm), in the form of a spatial map,
was provided to the tracker as a priori knowledge, but this map
could easily be learned over time as shown in [6]. The covariances
of the likelihood models referred in Section 2.2 were obtained in a
training stage, using ground truth data from other videos in the same
datasets. A time window of just 60 frames sufficed for all tests, but
consistent results were obtained with much larger time windows, to
deal with more severe occlusions, still in real-time.

The probabilistic nature of the tracker allows it to reject many
mistakes of the detector. The tracker performs very well with the
good quality detections of the CAVIAR videos, but it still performs
reliably with the lower quality detections of the other datasets (Cor-
ridor and Highway). This is a very important characteristic, since
reliable detection is still out of the reach of the current state-of-the-
art detectors, without any specific parameter tuning.

The main contribution of this paper, continuous operation on
streamed input, is demonstrated by applying it to very long se-
quences with no impact on performance.

5. CONCLUSION

We set out to solve one of the glaring omissions of global match-
ing trackers, which is their inability to operate continuously with a
streamed video input. Without this addition, optimal matching meth-
ods can only be applied a posteriori to track objects in a contained
video, with complete knowledge of the scene and very high com-
putational costs. Nonetheless, such algorithms have a tremendous
advantage over most other methods, which are limited to local deci-
sions instead of globally optimal ones. Based on a sound theoretical
framework that guarantees optimality of the matching at all times,
we proposed an update procedure that can be applied to a sliding
window of detections over time. This finally enables this class of
algorithms to work over continuous video streams, a critical require-
ment of video surveillance applications. In addition, encouraging
results demonstrate the effectiveness of this technique, its flexibility
under various difficult conditions, and even its robustness to its own
parameters.

6. REFERENCES

[1] K. Okuma, A. Taleghani, N. De Freitas, J. J Little, and D. G
Lowe, “A boosted particle filter: Multitarget detection and
tracking,” Lecture Notes in Computer Science, 2004.

3http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

(a) EnterExitCrossingPaths1cor
sequence.

(b) EnterExitCrossingPaths1front
sequence.

(c) WalkByShop1front sequence. (d) WalkByShop1cor sequence.

(e) Highway sequence. (f) Corridor sequence.

Fig. 1: Resulting tracks for each video, superimposed on an example
frame. Ground positions are estimated as the bottom-center of each
detection’s bounding box. Humans and vehicles were tracked under
different conditions, using the same set of tracker parameters.

[2] M. Betke, D. E. Hirsh, A. Bagchi, N. I. Hristov, N. C. Makris,
and T. H. Kunz, “Tracking large variable numbers of objects
in clutter,” Proceedings of the IEEE Computer Society, 2007.

[3] K. Shafique and M. Shah, “A noniterative greedy algorithm
for multiframe point correspondence,” IEEE transactions on
pattern analysis and machine intelligence, 2005.

[4] D. B Reid, “An algorithm for tracking multiple targets,” IEEE
Transactions on Automatic Control, 1979.

[5] C. Stauffer, “Estimating tracking sources and sinks,” in Com-
puter Vision and Pattern Recognition Workshop, 2003.

[6] C. Huang, B. Wu, and R. Nevatia, “Robust object tracking by
hierarchical association of detection responses,” Proceedings
of the 10th European Conference on Computer Vision, 2008.

[7] Ding-Zhu Du and Panos M. Pardalos, Handbook of Combina-
torial Optimization - Supplement Volume A, Springer, 1999.

[8] F. Porikli, O. Tuzel, and P. Meer, “Covariance tracking using
model update based on lie algebra,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2006.

[9] Q. Yu and G. Medioni, “Multiple-target tracking by spatiotem-
poral monte carlo markov chain data association,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2009.

[10] G. A Mills-Tettey, A. Stentz, and M. B Dias, “The dynamic
hungarian algorithm for the assignment problem with changing
costs,” 2007.

