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A. Proofs
A.1. Separability of learning problems

For the exact case, we will assume D can be written in
terms of dot-products, as mentioned. Keeping in mind that
its arguments are scalar,

D (αi, yi) = d1 ‖αi‖2 + d2 ‖yi‖2 + d3α
H
i yi, (A.1)

where we defined the new constants d1, d2 and d3. Then,
Eq. 2 becomes

min
α

1

2
αHGα +

n∑
i=1

(
d1 ‖αi‖2 + d2 ‖yi‖2 + d3α

H
i yi

)
= min

α

1

2
αHGα + d1 ‖α‖2 + d2 ‖y‖2 + d3α

Hy, (A.2)

where the Hermitian transpose (·)H is used instead of (·)T .
Notice that all the learning algorithms we consider use the
Hermitian transpose when extended from reals to complex
numbers, which simplifies some expressions, and has no ef-
fect if the quantities are indeed real.

Performing the substitutions G = U−1ḠU , α = U−1ᾱ
and y = U−1ȳ, by unitarity the U ’s cancel out, and we are
left with

min
ᾱ

1

2
ᾱHḠᾱ + d1 ‖ᾱ‖2 + d2 ‖ȳ‖2 + d3ᾱ

H ȳ. (A.3)

This may seem like a trivial change, but Ḡ is block-
diagonal, while G is not. Recall Eq. 13 (which we replicate
here to make Ḡ’s structure more clear),

Ḡ =


Ḡ(1)

Ḡ(2)
. . .

Ḡ(s)

 , (A.4)

where each block is n×n. To correspond to the same struc-
ture, split the vectors ᾱ and ȳ into s blocks of size n× 1,

ᾱ =


ᾱ1

ᾱ2

...
ᾱs

 , ȳ =


ȳ1

ȳ2

...
ȳs

 , (A.5)

where each block ᾱf and ȳf has n elements ᾱfi and ȳfi,
respectively. Now, since the rules for matrix products are
the same as for block-matrix products, direct computation
yields

min
ᾱ

s∑
f=1

(
1

2
ᾱHf Ḡf ᾱf + d1 ‖ᾱf‖2 + d2 ‖ȳf‖2 + d3ᾱ

H
f ȳf

)

= min
ᾱ

s∑
f=1

(
1

2
ᾱHf Ḡf ᾱf +

n∑
i=1

D (ᾱfi, ȳfi)

)
. (A.6)

Notice that Eq. A.6 is a sum of objective functions over
different (and non-interacting) optimization variables, ᾱf .
As such, they can be optimized independently, and Eq. A.6
is equivalent to the s sub-problems,

min
ᾱf

1

2
ᾱHf Ḡf ᾱf +

n∑
i=1

D (ᾱfi, ȳfi) , (A.7)

for f = 1, . . . , s, as required.

A.1.1 Remark on transformation matrices that yield
exact decompositions

As an interesting aside, it is possible to characterize the
class of matrices U that would yield an exact decomposi-
tion for most algorithms. Just as unitary matrices preserve
the L2-norm, it is known [1] that generalized permutation
matrices (which extend permutation matrices by allowing
the non-zero elements to take the values 1 and -1) preserve
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all Lp-norms, for p ≥ 1. By restricting U to this class, the
decomposition would be exact for algorithms such as the
SVR. Even though this result may be useful for other block-
diagonalizations, we cannot use it since it is too restrictive
for the case of block-circulant matrices.

A.2. Complex Support Vector Regression

This section deals with the extension of a linear regres-
sion problem,

min
w
‖w‖2 + c

n∑
j=1

∣∣wHx− yj
∣∣
ε
, (A.8)

to the complex domain, through the extended loss function,

∣∣wHx− y
∣∣
ε

=
∣∣Re

(
wHx− y

)∣∣
ε

+
∣∣Im (wHx− y

)∣∣
ε
,

(A.9)
as mentioned in Section 5. Note the Hermitian transpose
reduces to the transpose for real arguments. Also, the ε-
insensitive loss in Eq. A.8 and A.9 can be easily squared, in
the case of L2-SVR, and our result still holds.

In this section we will use i to denote a pure imaginary
unit, i =

√
−1. First, decompose all quantities into their

real and imaginary components, as

w = wR + iwI

xj = xRj + ixIj (A.10)

yj = yRj + iyIj .

Substituting into Eq. A.8, and applying the rules of the
complex product,

min
w

∥∥wR + iwI
∥∥2

+ c

n∑
j=1

∣∣∣(wR
)T

xRj +
(
wI
)T

xIj − yRj

+ i
((

wR
)T

xIj −
(
wI
)T

xRj − yIj
)∣∣∣
ε
.

(A.11)

Expanding the first term, and applying Eq. A.9 to the
second,

min
w

∥∥wR
∥∥2

+ c

n∑
j=1

∣∣∣(wR
)T

xRj +
(
wI
)T

xIj − yRj
∣∣∣
ε

+
∥∥wI

∥∥2
+ c

n∑
j=1

∣∣∣(wR
)T

xIj −
(
wI
)T

xRj − yIj
∣∣∣
ε
.

(A.12)

Eq. A.12 shows that the complex SVR is equivalent to
an augmented real SVR, with:

1. Double the features, to account for real and imaginary
parts of the inputs and weights.

2. Double the samples, to account for the loss function in
the real axis and in the imaginary axis (from Eq. A.9).

The augmented real SVR can be written more compactly as

min
w
‖w′‖2 + c

n∑
j=1

∣∣w′Tx′j − y′j∣∣ε , (A.13)

with x′j the rows of X ′ and y′j the elements of y′, defined
in terms of the analogous original complex quantities,

X ′ =

[
Re (X) Im (X)
Im (X) −Re (X)

]
y′ =

[
Re (y)
Im (y)

]
(A.14)

w′ =

[
Re (w)
Im (w)

]
.
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