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Abstract

Multiple object tracking has been formulated recently as
a global optimization problem, and solved efficiently with
optimal methods such as the Hungarian Algorithm. A se-
vere limitation is the inability to model multiple objects that
are merged into a single measurement, and track them as a
group, while retaining optimality. This work presents a new
graph structure that encodes these multiple-match events as
standard one-to-one matches, allowing computation of the
solution in polynomial time. Since identities are lost when
objects merge, an efficient method to identify groups is also
presented, as a flow circulation problem. The problem of
tracking individual objects across groups is then posed as a
standard optimal assignment. Experiments show increased
performance on the PETS 2006 and 2009 datasets com-
pared to state-of-the-art algorithms.

1. Introduction

Recent years have seen encouraging developments in the
automatic detection of objects and isolated events. It re-
mains a challenge, however, to maintain the identity of tar-
gets over long spans of time, which requires that not a sin-
gle mismatch occurs during the whole tracking period. Sta-
ble identities are a crucial requirement for the inference of
higher-level meaning and events, enabling important appli-
cations such as automatic surveillance and security, action
recognition and video querying.

Our work improves on several ideas proposed recently
in the literature, which formulate tracking as a high-level
optimization problem. By making use of global informa-
tion, as opposed to low-level, local features, this approach
promises to solve the drifting and track loss issues of previ-
ous methods. In this work, we solve the long-standing issue
of properly modeling merge and split events in a global op-
timization framework, solvable in polynomial time. We also
devise a method to identify and track across groups.

Figure 1. (a) A portion of the track graph from PETS 2009 se-
quence S2.L1, with total flows below each node. The groups sub-
graph (where flows are greater than 1) is represented with bold
arcs and square nodes. (b) The individual objects’ tracks, after
matching them across the groups subgraph.

1.1. Related work

A great research effort has been dedicated to following a
single object by keeping a model of low-level features and
searching for its new location in each frame [16, 10, 19]. It
is hoped that, given a good enough model of appearance and
motion, a tracker will always be able to recognize its target.
The goals are often contradictory: a model must be highly
specific and stable to ignore occlusions and similar objects,
but also highly general and adaptable to cope with legiti-
mate changes in appearance. Even though there are proba-
bilistic models for the interactions between objects and the
association of objects to detections [7, 17, 9], binding deci-
sions are always made locally in time, in a greedy fashion.
A thorough survey on the subject can be found in [22].

The realization that local information sometimes is not
enough to make a correct decision led to the development
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of global optimization trackers, which can operate on larger
time scales and make use of high-level reasoning to re-
solve ambiguities. By posing the problem as a minimum-
cost graph matching (optimal assignment or optimal match-
ing), efficient methods that run in polynomial time such
as the Hungarian algorithm have been used successfully
[15, 8, 20]. The key idea is that each detection must be
matched to another detection that occurs later in time, and
chaining these matches yields tracks. All tracks are opti-
mized simultaneously, and the number of tracks, initializa-
tions and terminations are decided as to maximize a well-
defined posterior probability. In contrast, greedy strategies
can get trapped in local maxima of the objective function.

Since the optimal matching problem is a special case of
the minimum-cost flow problem, which in turn can also be
solved as a more generic linear program (LP), several au-
thors have used them to define additional restrictions. The
LP solution presented in [11] introduces a term that en-
courages relative positions of objects to remain constant,
however it assumes the number of objects to be fixed. A
min-cost flow formulation is presented in [24], but since the
flows are restricted to values of 0 or 1 it is effectively equiv-
alent to an optimal matching. Their main contribution is an
iterative procedure to solve occlusions.

The authors of [13] go further and use Quadratic Boolean
Programming, but this class of problems cannot be solved
without hypothesis pruning, which may yield sub-optimal
solutions. The works [2] and [1] are notable for using
min-cost flow and LP to track simultaneously with multiple
views. In contrast, we use a single, uncalibrated camera.

Occlusion models to allow matches across occlusions
caused by other objects are prevalent among all of these
methods, since they optimize one-to-one matches. A differ-
ent approach is to track objects that may occlude each other
as a group, which allows them to be tracked for far longer
than existing occlusion models can cope with. One-to-one
matches cannot represent objects and groups merging or
splitting, so many-to-one and one-to-many matches (merges
and splits) are needed. The authors of [15] proposed an iter-
ative method but it may require solving a number of one-to-
one optimal matchings that is exponential in the number of
detections. Markov Chain Monte Carlo (MCMC) methods
[23] can also incorporate merges and splits.

We should point out that Multiple Hypothesis Tracking
[18] and MCMC also attempt to model the joint trajecto-
ries of all objects, but cannot guarantee a globally optimal
solution in sub-exponential time. It is also fair to note that
the greedy trackers referenced earlier are still useful as a
computationally cheap way to reduce the search space by
pre-computing short track segments or tracklets. Optimal
matchings can also be used on a frame-by-frame basis as
in [21], but from the point of view of a whole video these
methods are still considered greedy.

1.2. Outline and main contributions

Given the output of a low-level detection process, we
propose a system to obtain the individual tracks of an un-
known number of objects.

The main contributions in this paper are as follows:

1. A novel graph structure that allows polynomial algo-
rithms to obtain many-to-one and one-to-many opti-
mal matchings. Previous algorithms only allow one-
to-one, or scale exponentially with detections [15].

2. A flow circulation formulation for the problem of
counting objects in a track graph, which can be solved
in polynomial time. Previous methods have no known
bounds and cannot handle all cases [14].

3. A method to resolve individual identities exactly, by
matching the individual objects across portions of the
track graph where their identities are ambiguous.

The matching algorithm taking into account merges and
splits is presented in Section 2. Section 3 describes the
method to retrieve object counts, and Section 4 the process
of matching across groups. Section 5 discusses the finer
details of our implementation. Finally, Section 6 presents
experimental results.

2. Optimal matching

In this section we will define the basic maximum a-
posteriori (MAP) problem and then extend it to encompass
merge and split events. We will then show how to modify
the cost matrix of an optimal matching algorithm to solve
the extended MAP problem.

2.1. MAP framework

Consider the output of a generic object detector, either a
classifier [13] or foreground segmentation [15], for a given
video sequence. Tracking by global optimization amounts
to linking all the detections together over the whole video,
choosing links so that the total probability is maximized;
each disjoint string of detections represents the track of a
different object.

As a matter of computational efficiency, it’s standard
practice to pre-link detections with a very high probability
of association. The authors of [8] use a set of conserva-
tive association rules, and [15] use simple Kalman filters.
This yields a set of track segments, or tracklets, without any
dubious links. The tracklets are then linked by a global op-
timization process.

A more precise definition of these terms follows. A
tracklet Tj is a set of detections, and the set of all tracklets
is T . A candidate solution is a set of tracks S = {Si}, and



each track Si is a set of ni tracklets1 Si =
{
T i
j

}
. No two

tracks may share a tracklet (Si ∩ Sj = ∅, ∀Si, Sj ∈ S), we
will refer to this as the no-overlap restriction. The optimal
solution S∗ is obtained by solving a MAP problem [8],

S∗ = arg max
S

P (S|T ) = arg max
S

P (T |S)P (S)

= arg max
S

P (S)
∏

Tj∈T
P (Tj |S) (1)

subject to the no-overlap restriction. The last step assumes
the likelihoods of the tracklets P (Tj |S) are conditionally
independent given S. A tracklet Tj that is not in any track
is rejected as a false alarm with likelihood P−j , and the like-
lihood of being accepted is P+

j .

P (Tj |S) =

{
P+
j if ∃Si ∈ S : Tj ∈ Si

P−j otherwise
(2)

The association prior of a single track P (Si) is defined
as a Markov chain with an initialization term Pinit(T

i
0), link

terms Plink(T i
k, T

i
k+1), and a termination term Pterm(Tni).

Assuming tracks to be independent of each other,

P (S) =
∏
Si∈S

P (Si) (3)

P (Si) = Pinit(T
i
0)

(
ni−1∏
k=0

Plink(T i
k, T

i
k+1)

)
Pterm(Tni

)

(4)
These terms are obtained from simple parametric models

of the tracklet data, and will be explained in Section 5.

2.2. MAP estimation with merges and splits

In many realistic scenarios, nearby objects cannot be dis-
tinguished and will be merged into a single track. This situ-
ation is unavoidable with all detection methods but is even
more severe with foreground segmentation2. This section
will address the issue of extending the MAP framework to
allow merge and split events.

With merges and splits, representing the solution as a
set of disjoint tracks S is no longer appropriate. A more
general representation is the track graph used in [14]. The
track graph Glink has the tracklets T as the nodes set, and
a set of directed arcs Alink. Each track Si is equivalent
to a series of arcs connecting each tracklet to the next
in the same track. Formally, Alink =

⋃
Si∈S Ai, with

Ai =
{

(T i
0, T

i
1), (T i

1, T
i
2), . . . , (T i

ni−1, T
i
ni

)
}

. Note that
direction is important; an arc points from Ti to Tj .

1We use T i
j to index the jth tracklet of track Si, and Tj when the

associated track is not relevant.
2The standard formulation assumes tracklets represent single objects.

Occlusions are handled as missing tracklets, making association difficult.

Figure 2. (a) Two tracklets, Ta and Tb, can link to tracklet Tm,
but not at the same time (merge), due to the no-overlap restriction.
(b, c) The two solutions (bold links).

The MAP problem from Eq. 1 is maintained, since S is
equivalent toAlink. Let Tinit and Tterm be the set of track-
lets that initiate and terminate tracks, respectively. Combin-
ing Eq. 3 and 4, and rearranging the factors, yields

P (Alink) = Pinits Pterms Plinks (5)

where

Pinits =
∏

Ti∈Tinit

Pinit(Ti) (6)

Pterms =
∏

Ti∈Tterm
Pterm(Ti) (7)

Plinks =
∏

(Ti,Tj)∈Alink

Plink(Ti, Tj) (8)

We can now define an augmented graph G that includes
merge and split arcs, A = Alink ∪Amerge ∪Asplit. A pair
of merge arcs links two tracklets to a single tracklet, while a
pair of split arcs links one tracklet to two. This is unlike the
arcs inAlink, since they represent a disjoint set of tracks (by
the no-overlap restriction on S). Denote the set of tracklets
that arcs inAmerge link to as Tmerge, and tracklets that arcs
in Asplit link from as Tsplit. Then we can define a more
broad prior with additional terms as

P (A) = Pinits Pterms Plinks Pmerges Psplits (9)

Pmerges =
∏

Ti∈Tmerge

Pmerge(Ti) (10)

Psplits =
∏

Ti∈Tsplit
Psplit(Ti) (11)

assuming merges and splits are conditionally independent
given the tracklets that interact in each merge or split. Sec-
tion 5 explains how we compute Pmerge(Ti) and Psplit(Ti),
the likelihoods of these events. Without any merge or split
arcs, this reduces to the previous formulation.

2.3. Global optimization

We now turn to optimal matching to solve this problem.
A set of candidate links and their respective costs can be
encoded as an n × n matrix C = [c̄ij ], with n the number



of tracklets and c̄ij the cost of linking the tracklet Ti to Tj .
Costs may be infinite, expressing impossible links, other-
wise they are usually obtained as c̄ij = − logPlink(Ti, Tj).

Optimal matching methods such as the Hungarian algo-
rithm [12] find the assignment matrix X = [xij ] that mini-
mizes the total cost

X∗ = arg min
X

∑
i,j c̄ijxij

subject to:
∑

i xij = 1, ∀j∑
j xij = 1, ∀i

(12)

with i, j ∈ {1, . . . , n}, and xij ∈ {0, 1}. The output X∗ is
the adjacency matrix of the track graph Glink. These equa-
tions model the no-overlap restriction.

As shown in [8], C can be replaced by an augmented
2n×2n matrix C with initialization and termination blocks

C =

[
Clink Cterm

Cinit 0n×n

]
(13)

The n×n blockClink = [cij ] incorporates the link prob-
abilities and tracklet likelihoods

cij =

 − log P−i , if i = j

− log

[√
P+
i Plink(Ti, Tj)

√
P+
j

]
, otherwise

(14)
Let diag∞(ek) be an n × n matrix where diagonal ele-

ments are ek and off-diagonal elements are infinite, then the
initialization and termination blocks are defined as

Cinit = diag∞(cinit,k), cinit,k = − log

[
Pinit,k

√
P+
k

]
Cterm = diag∞(cterm,k), cterm,k = − log

[
Pterm,k

√
P+
k

]
(15)

Any solutionX corresponds univocally to a set of tracks3

S, and it can be verified that the corresponding total cost is
− log P (S|T ). A proof of this equivalence is given in [8].

This formulation solves the MAP problem from Section
2.1 without merges and splits. Fig. 2-a illustrates two track-
lets, Ta and Tb, that can be linked to another Tm. Alter-
native links are also represented. Due to the no-overlap re-
striction, either Ta is linked to Tm or Tb to Tm, but not both.
The two solutions involving Tm are shown in Fig. 2b-c.

2.4. Solution with merges and splits

Considering the previous situation, when there is a
chance that Ta and Tb merge into Tm (Section 5 discusses
how these hypotheses are generated), we would like to al-
low a third possibility, a merge, where all three are linked

3Taking the upper-left n × n block of the solution as the adjacency
matrix of Glink .

Figure 3. (a) The same subgraph of Fig. 2, with Tb linked to a vir-
tual termination node (its termination cost is modified to c∗term,b).
(b-d) The three solutions (bold links); (d) models a merge event.

with cost cmerge,m = − logPmerge(Tm). A heuristic pro-
cedure was presented in [15], but we arrived at an exact
solution, with some restrictions.

A merge event will be represented as Ta linking to Tm,
and Tb terminating (as shown in Fig. 3-d). The graph needs
to be modified so that:

1. The total cost of linking Ta to Tm and terminating a
track at Tb is the cost of the merge:

cam + c∗term,b = cmerge,m (16)

2. If a track is terminated at Tb, then Ta must link to Tm.

The first condition ensures a correct total cost, and im-
plies that the termination cost of Tb must be c∗term,b =
cmerge,m − cam. The second condition makes sure that Tb
can only be terminated in a merge event, and not indepen-
dently. It requires that we disable all links to Tm from track-
lets other than Ta and Tb. This way, if Tb does not link to
Tm (because it terminates or links to another tracklet), then
Ta must link to Tm, by the restrictions in Eq. 12. The mod-
ified graph can be seen in Fig. 3-a, and the three possible
solutions in Fig. 3b-d.

Splits are modeled in exactly the same way, by reversing
the direction of the links (track termination is replaced with
track initialization).

We will now show how this relates to the optimal match-
ing, by defining a modified 2n×2n cost matrixC∗ =

[
c∗ij
]
.

For each merge hypothesis, let T 1
merge,k and T 2

merge,k be
the two tracklets that may merge into Tk. Conversely, for
each split hypothesis, the two tracklets that split from Tk
are T 1

split,k and T 2
split,k. Then fulfilling the first condi-

tion amounts to modifying the initialization and termination
costs from Eq. 15 to



c∗term,k =

{
cmerge,k−cak if Tk ∈ Tmerge, Ta = T 1

merge,k

cterm,k otherwise

c∗init,k =

{
csplit,k−cak if Tk ∈ Tsplit, Ta = T 1

split,k

cinit,k otherwise
(17)

The elements of the updated matrix can then be obtained
by making the costs of the disabled arcs infinite

c∗ij =


∞ if Tj ∈ Tmerge ∧ Ti /∈

{
T 1
merge,j , T

2
merge,j

}
∞ if Ti ∈ Tsplit ∧ Tj /∈

{
T 1
split,i, T

2
split,i

}
cij otherwise

(18)

2.4.1 Practical considerations

This strategy gives the optimization algorithm the choice
of enabling or not the proposed merge and split hypotheses,
turning a one-to-one optimal matching into a many-to-many
optimal matching. However, modeling these events requires
some compromises, so we explain our choices here.

A track can no longer terminate at T 2
merge,k indepen-

dently of the merge; the same applies to T 2
split,k initiating a

track independently of the respective split. In practice such
a situation would be very difficult to distinguish from the
merge or split. We found that modeling such a rare event is
not worth the additional complexity.

Also, when there is a merge hypothesis at Tk, no track-
lets can link to it except T 1

merge,k and T 2
merge,k. But the fact

that there is a merge hypothesis at all means that T 1
merge,k

and T 2
merge,k are spatially very close to Tk (with the crite-

ria of Section 5). This makes it highly unlikely that these
two tracklets must be ignored and some other, farther away
tracklet should be linked to Tk, so disabling other links is
justified. The same reasoning applies to split hypotheses.

3. Object counts as a flow circulation problem
Having made the associations through merges and splits,

it is obvious that some links may represent the transit of
more than one object: for example, after a merge, two or
more objects are being tracked in a single tracklet. Lone ob-
jects can be tracked unambiguously but as soon as a group
is formed, there is uncertainty in matching each single ob-
ject that joins the group to each single object that leaves it.
Nevertheless, modeling this uncertainty is a tremendous ad-
vantage when ambiguities persist for long periods of time.

In order to isolate groups, we must count the number
of objects passing through each link. In [14], an iterative
scheme is proposed to count objects in a track graph, but

the authors admit that the algorithm can get trapped in an
inconsistent state and so cannot process some portions of
their test video sequence.

We present a simple solution, posing the problem as
a minimum-cost flow circulation, for which algorithms of
polynomial complexity do exist (e.g., [5]). Modeling the
number of objects as a flow is a natural fit since standard
network restrictions ensure the number of objects remains
constant; source arcs at track initializations produce flow
and sink arcs at track terminations consume it.

Let J be the set of all arc indexes in a graph, and I the
set of indexes of all nodes. For a node i ∈ I, in(i) and
out(i) denote the indexes of incoming and outgoing arcs
in the graph. For each arc j ∈ J , lower and upper flow
bounds are given by lj and uj , respectively, and the cost per
unit flow is ĉj . Solving the min-cost flow circulation of Eq.
19 yields the optimal arc flows f∗ =

(
f∗j |j ∈ J

)
.

f∗ = arg min
f

∑
j∈J

ĉjfj

subject to:
∑

j∈out(i)

fj −
∑

j∈in(i)

fj = 0, ∀i ∈ I

lj ≤ fj ≤ uj , ∀j ∈ J (19)

To solve the object counts problem, we form a graph
where each unit of flow represents the transit of one ob-
ject. We use the track graph from Section 2, adding a
source or sink arc to each node labeled as a track initial-
ization or termination, respectively. Upper bounds are un-
used (uj = ∞, ∀j ∈ J ). Lower bounds are 1, requiring
each arc, including source and sink arcs, to carry at least
one object (lj = 1). Costs encourage more flow through
larger detections: ĉj = max(Li/Si, Lk/Sk), where arc j
links tracklet Ti to Tk, Li is the length of Ti (number of
detections), and Si the average size of the detections in Ti.

After computing the optimal solution with the Edmonds-
Karp algorithm [5], the optimal flows through the arcs (f∗j )
reveal the number of objects that traverse each link. Fig. 1-a
illustrates the flows on a portion of a track graph obtained
from a real test sequence. The total flow (sum of incoming
flows4) is shown below each node.

4. Recovering object identities
As explained in Section 3, counting objects is necessary

in order to isolate groups of objects. With this knowledge it
is now possible to match single objects across groups.

We will refer to the subgraph of G that represents groups
as the groups subgraph, Ggroup. It can be constructed by
taking the subset of arcs and nodes with flow greater than 1:

4By Eq. 19, the sum of incoming and outgoing flows through a node
must be equal so either definition of total flow is correct.



Tgroup =

{
Ti |

∑
j∈in(i)

f∗j > 1, Ti ∈ T
}

(20)

Agroup = {(Ti, Tj) | f∗k > 1, k ∈ out(i) ∧ k ∈ in(j)}

We can now define the isolated objects to be matched.
Single-object tracklets that enter a group have an outgoing
arc to Ggroup, while those that leave a group have an incom-
ing arc from Ggroup:

Tin = {Ti | ∃(Ti, Tk) ∈ A, Ti /∈ Tgroup, Tk ∈ Tgroup}

Tout = {Ti | ∃(Tk, Ti) ∈ A, Ti /∈ Tgroup, Tk ∈ Tgroup}
(21)

Fig. 1-a illustrates these notions: Tgroup is depicted as
square nodes,Agroup as bold links, the three round nodes to
the left represent Tin and the remaining round nodes Tout.

Considering whether two tracklets Ti ∈ Tin and Tj ∈
Tout can be matched across groups, they may represent the
same object only if Tj is reachable from Ti using a directed
path in Ggroup (and the two arcs that link Ti and Tj to
Ggroup). We use this information to build a final cost matrix
to find the optimal matching between them. Let the number
of tracklets in Tin and Tout be r and s, respectively, then the
elements of the r × s matrix C ′ =

[
c′ij
]

are given by:

c′ij =

{
− log Plink(Ti, Tj) if Tj is reachable from Ti

∞ otherwise
(22)

This stage allows matches across potentially very long
ranges. The link likelihoods Plink(Ti, Tj) are calculated in
the same way as for the short-range links in Section 2.

Since nodes in different connected components of
Ggroup are, by definition, not reachable from each other,
a convenient optimization is to find connected components
first and treat them separately. This expresses the intuitive
notion that matching objects across non-interacting groups
can be done independently.

After obtaining the optimal matching with the Hungarian
Algorithm, we finally have the complete tracking history of
each object, as they enter and exit several groups. For the
practical purpose of tracking an object within a group (i.e.,
knowing exactly which tracklets in a group are associated
with the object) we simply find the shortest path in Ggroup
from Ti ∈ Tin to Tj ∈ Tout. If r 6= s then one or more
objects must have entered or exited the scene while inside
the group, which can happen when a group of objects enter
or exit the scene together. In this case, some (or all) rows
or columns of C ′ have no match. These correspond to the
entering or exiting objects, respectively, and instead we find
the shortest path to the closest tracklet where a track initial-
ization or termination occurs.

5. Implementation details
Although the focus of this work is on the optimization

framework, we present here the detection and tracklet gen-
eration processes, as well as the probabilistic models used to
describe low-level features. Though there are numerous al-
ternatives in the literature reviewed in Section 1.1, our main
goal was to balance simplicity with good enough perfor-
mance. It should be noted that the optimization framework
is fairly independent of these particular choices.

Object detection: For each sequence a simple back-
ground image is learned as the per-pixel medoid of 100 sam-
ple images [4]. Segmentation is performed by a two-label
graph-cut algorithm [3] with likelihoods proportional to the
color distances between image and background. Connected
components of the segmented image represent detections.

Tracklet generation: We use the simple data association
proposed in [15], summarized here. Any unassociated de-
tections initialize Kalman filters with position, size and ve-
locity states. Every frame, each Kalman filter is updated
and associated with a single detection inside a validation
gate. If there are no detections, or more than one in the val-
idation gate, that tracker is terminated. Also, if more than
one tracker is associated with the same detection, they are
terminated. The detections associated to each tracker con-
stitute a tracklet. This conservative set of rules ensures that
tracklets reject any dubious associations.

Data likelihoods: The link likelihoods we use were pro-
posed in [8], except we compare appearances using the Re-
gion Covariance Matrix dissimilarities of [16] instead of
histogram distances. Link likelihoods take into account mo-
tion and appearance. LetN (x,Σ) be a zero-mean Gaussian
with the (possibly 1 × 1) covariance matrix Σ evaluated at
x, then the likelihood of matching tracklets Ti and Tj is:

Plink(Ti, Tj) = N (daij , Σa)N (dmij , δtΣm)N (dmji , δtΣm)
(23)

where daij is the appearance dissimilarity between Ti and Tj ,
dmij is the difference between the predicted Kalman state of
Ti and the state of the closest detection (in time) in Tj , and
δt is their time difference. The covariances Σa and Σm are
estimated from training data. Since the motion covariance
is proportional to time, long-range links rely less on this
component. Links can only be made forward in time (δt ≤
0 ⇒ Plink(Ti, Tj) = 0). Additionally, in the first stage
(Section 2) only short-range links are considered (δt ≥ 3⇒
Plink(Ti, Tj) = 0).

Making use of the observation that objects usually ap-
pear or disappear near the edges of the image, we cal-
culate the track initialization likelihoods as Tinit(Ti) =
N (dei ,Σe), where dei is the distance of the first detection
of Ti to the closest edge of the image, and Σe is a fixed
parameter. Termination likelihoods Tinit(Ti) are estimated



Method Metric PETS’09 PETS’06
S2-L1 S1-T1 S3-T7 S4-T5

MOTA 0.966 0.785 0.816 0.883
Multi- Mismatches 10 16 4 7
match Precision 0.985 0.882 0.847 0.932

Recall 0.986 0.908 0.997 0.954
MOTA 0.806 0.643 0.775 0.650

1-to-1 Mismatches 18 28 19 13
match Precision 0.915 0.845 0.869 0.896

Recall 0.900 0.785 0.920 0.738
Table 1. Evaluation results for both methods. The PETS’09 MOTA
score of the baseline algorithm (1-to-1 match) is in line with most
contestants of the PETS’09 and ’10 workshops [6]. The proposed
algorithm (multi-match) scored higher than every contestant.

the same way, but using the last detection of Ti.
Finally, the likelihood of Ti being accepted or rejected

are, respectively, P+
i = (1 − β)|Ti| and P−i = β|Ti|, with

|Ti| the number of detections in Ti and β the expected fail-
ure rate of the detector, which we set to 10−5.

Merges and splits: The hypothesis of tracklets Ta and Tb
merging into Tm is considered if they occur within a few
frames of each other (in our implementation, 2 frames) and
obey the area overlap criteria:

A(Ta ∩ Tm) ≥ αA(Tm) ∧ A(Tb ∩ Tm) ≥ αA(Tm) (24)

where A(Tm) is the area of the bounding box of the first
detection of Tm, and A(Ti ∩Tm) is the area of the intersec-
tion of the bounding boxes of the last detection of Ti and the
first detection of Tm. We set α = 0.5. Split hypothesis are
obtained in the same way but with the time axis reversed.

For each merge hypothesis, consider the pixels of both
Ta and Tb jointly as if they were a single tracklet T̂ab.
Then the likelihood of the merge is the chance of this
virtual tracklet linking to Tm; that is, Pmerge(Tm) =

Plink(Tm, T̂ab). Split likelihoods Psplit(Tm) are obtained
in exactly the same way.

6. Experiments
We evaluated the proposed system on challenging videos

from two publicly available datasets, PETS 2006 and PETS
2009. Both datasets provide multiple views, but we used
a single uncalibrated camera: view 4 and view 1, respec-
tively. The sequence S2-L1 from PETS 2009 is intended as
a benchmark for multiple object tracking methods [6] and
shows a scripted outdoors scene with several pedestrians
crossing each other, totaling 795 frames. The PETS 2006
videos were recorded at a train station and represent a typ-
ical surveillance scenario with complex interactions, with a
total of 8443 frames over 3 sequences.

Our system is better equipped to handle undersegmenta-
tion (groups) than oversegmentation. Since PETS 2009 S2-
L1 has an occluding lightpost with a large sign that results

in oversegmentation of groups in the middle of the screen,
the likelihood of a pixel in this region being considered fore-
ground is taken as the weighted average of its neighborhood
with a gaussian kernel of σ = 6. This results in detections
being connected across these pixels. Finding these regions
automatically will be the subject of future work. Still im-
ages of the results are shown in Fig. 4.

For a performance comparison, we use the same system
as a baseline, but with merges and splits disabled. It is a
state-of-the-art global optimization tracker, which relies on
one-to-one matches. Instead of forming groups, it handles
inter-object occlusions as long range matches, so we allow
links with large time gaps (δt ≥ 60⇒ Plink(Ti, Tj) = 0).

The comparative results with ground truth annotations
every 3 frames are summarized in Table 1. We considered
every moving person in the ground truth, as well as bags that
separate from their owners, but not people who are sitting
down through the whole video.

For a quantitative analysis we calculated the Multiple
Object Tracking Accuracy [6], a metric widely used in the
literature in recent years. A score of exactly 1 represents
zero errors. We also report the raw number of identity mis-
matches. Finally, precision and recall were calculated. They
do not take mismatches into account so are more indicative
of the performance of the first two stages.

Most errors are caused by mistakes of the foreground
segmentation: oversegmentation, small movements of sit-
ting people, and pigeons in PETS 2006. Situations where
high-level inference is not informative and people are very
similar in appearance can cause mismatches in PETS 2009.

As expected, the use of high-level reasoning about iden-
tity ambiguities is a tremendous advantage. One-to-one
matching handles occlusions by matching across them, so
it performs well in simple cases such as objects crossing.
However, large time gaps result in hundreds of possible
matches, which increase the likelihood of errors in case
of ambiguity. Reasoning about group formation severely
restricts the matches to those that are physically possible,
which results in improved performance in the most difficult
cases, such as people traveling together for long periods.

Our framework outperforms all the state-of-the-art sys-
tems evaluated in the PETS’09 and PETS’10 workshops, as
reported in [6] (the top contestant’s MOTA was 0.960).

7. Conclusion
In this work we propose a new method that allows the

multiple-matching tracking problem to be solved as an or-
dinary one-to-one matching. We have also presented a rig-
orous treatment of the formation of groups, and tracking ob-
jects across them. Experiments on challenging videos illus-
trate the advantage of considering merged measurements.
We expect this framework to enable future systems to han-
dle scenes of increasingly complex situations.



Figure 4. Tracking results for PETS’09 S2-L1 (first row) and PETS’06 S1-T1-C (second row). Identities are color-coded so this image is
best viewed in color. Objects in a group are identified by nested outlines with their respective colors. Trails show the short-term trajectory
of each object. Note that sudden changes in position are not tracking errors, but due to merged objects sharing the same position when in a
group. Even though most tracks go through complicated interactions, reasoning about the formation of groups allows the tracker to recover
their identities.
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