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Appendix C: Additional circulant matrix properties

This appendix will give more complete derivations of properties that, while easy
enough to verify through direct computation, merit a more detailed analysis.
These proofs were not included in the main paper to meet length requirements.

It also represents an attempt to better formalize the tools that were used in
the main paper, and may be useful in other domains.

First we will formalize a de�nition given in Section 2.2. The fact that each
row i of C(u) is given by P iu can be expressed in the following way.

De�nition 1. The rows of an n× n circulant matrix C(u) are given by:

C(u) =


(
P 0u

)T
...(

Pn−1u
)T
 , (25)

where P is the n× n permutation matrix that produces cyclic shifts of a vector,

P =


0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...
...
. . .

. . .
...

0 0 · · · 1 0

 . (26)

Property 1. Transposed circulant matrices and correlation

Transposing a circulant matrix induces complex-conjugation in the Fourier do-
main; ie.,

CT(u) = C(F−1(F∗(u))), (27)

with ∗ denoting the complex-conjugate. This suggests an alternative to Eq. 4,
only with a transposed circulant matrix:
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CT (u)v = F−1 (F(u)�F(v)) . (28)

Notice that the complex-conjugate was cancelled out. Eq. 28 can be under-
stood as encoding correlation instead of convolution, which di�er only by �ipping
the order of the elements of one of the input vectors.

Eq. 27 was used in Eq. 24 (Appendix A.2) to cancel out the complex-
conjugation from the F(k̄) term.

Property 2. Symmetricity of the reduced kernel matrix representation

This property establishes that the vector k, which compactly represents the
kernel matrix through K = C(k) (Eq. 6), is symmetric and thus has real Fourier
transform:

F (k) = F∗ (k) . (29)

This property was used in Eq. 22 to remove the complex-conjugation from the
1/ (F (k) + λ) term, which would arise from Eq. 4.

Proof. The kernel matrixK is symmetric (K = KT ), due to positive de�niteness
of the kernel κ. From the compact representation of the kernel matrix K = C(k)
(Eq. 6), and Eq. 27 in Property 1, we get

KT = CT (k) = C(F−1(F∗(k))). (30)

Comparing it to K = C(k) = C(F−1(F(k))), we �nd that

F (k) = F∗ (k) . (31)

As an aside, since K = KT we �nd that the vector k is also symmetric (its
elements satisfy ki = kn−i). The fact that a symmetric signal has real Fourier
transform is a well-known result from signal processing theory [21].

Property 3. Matrix form of dot-product kernels

This property was used in Section 3.1, and establishes the equivalence between
the de�nition of the elements of vector kdp

kdpi = κ(x, P ix′) = g
(
xTP ix′

)
, ∀i = 1, . . . , n (32)

and the same vector in matrix notation,

kdp = g(C(x′)x) . (33)

Proof. One way to prove this is to make some part of kdpi conform to De�nition

1, thus constructing a circulant matrix. Because kdpi is a scalar,

kdpi = g
((
P ix′

)T
x
)
. (34)
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Concatenating the elements into a vector, and since g(·) is an element-wise func-
tion,

kdp =


g
((
P 0x′

)T
x
)

...

g
((
Pn−1x′

)T
x
)
 = g



(
P 0x′

)T
x

...(
Pn−1x′

)T
x


 . (35)

Taking the x out of the multiplication, and using De�nition 1, we get

kdp = g



(
P 0x′

)T
...(

Pn−1x′
)T
x

 = g(C (x′)x) . (36)

Property 4. Matrix form of kernel coe�cients convolution

This property was used in Section A.2 to prove Eq. 9, the fast detection formula.
It consists of expressing Eq. 23 (reproduced here),

ŷi =
∑
j

αjκ(P iz, P jx), ∀i = 1, . . . , n (37)

in matrix form,

ŷ = CT (k̄)α, (38)

where k̄ is the vector with elements k̄i = κ(z, P ix), and α is the vector with
elements αi.

Proof. We can build a kernel matrix K̄ between shifted versions of z and shifted
versions of x, with elements

k̄ij = κ(P iz, P jx). (39)

Note that, unlike the kernel matrix K used for training, K̄ is not necessarily
symmetric, because x and z are di�erent.

Then, the elements in Eq. 37 can be concatenated into a vector ŷ, and ex-
pressed as the multiplication

ŷ = K̄Tα, (40)

which can be veri�ed to be equivalent to Eq. 37 by direct computation.
With the same argument as Theorem 1, we can see that K̄ is circulant. As

such, we can express it in reduced form as K̄ = C(k̄), with the vector k̄ as
de�ned earlier. We then obtain

ŷ = CT (k̄)α. (41)
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