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A. Additional proofs
A.1. Derivation of automatic hyper-parameter tuning in closed-form

We rewrite the problem in eq. 14 as a minimization over ρ and β where z′ = ρz − β∆z:
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Since f̂ is a quadratic function of ρ and β with PSD Hessian it is therefore convex and we can find its extrema by cancelling
the gradient:

∇ρ,β f̂(z′) = 0. (A.4)

Therefore, we have: [
zTJ
−∆T

z J

]
+

[
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where the last equality can be computed by inverting the 2× 2 matrix explicitly.

A.2. Proof of convergence in the quadratic case

Theorem A.1. Let f be a convex quadratic function, and its hyper-parameters β > 0, ρ > 0 satisfy

3
2βhmax − 1 < ρ < 1 + βhmin, (A.7)

where hmin and hmax are the smallest and largest eigenvalues of the Hessian H , respectively. Then Algorithm 1 converges
linearly to the minimum of f .

Corollary A.1.1. Algorithm 1 converges for any momentum parameter 0 < ρ < 1 with a sufficiently small learning rate
β > 0, regardless of the (PSD) Hessian spectrum.
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Proof of Theorem A.1. We follow similar derivations on quadratic models by previous work on the heavy-ball method [2, 3, 1],
but including our curvature term in the update. We assume the quadratic model:

f(w) =
1

2
wTHw − bTw, (A.8)

which has Hessian matrix H , and gradient J(w) = Hw − b.
Without loss of generality, we will consider the pure Newton method, where H is not regularized (λ = 0):1

zt+1 = ρzt − β(Hzt + J(wt)) (A.9)
wt+1 = wt + zt+1 (A.10)

Eq. A.9 can be rearranged to
zt+1 = (ρI − βH)zt − βJ(wt). (A.11)

We now perform a change of variables to diagonalize the Hessian, H = Qdiag(h)QT , with Q orthogonal and h the vector of
eigenvalues. Let w∗ = arg minw f(w) = H−1b be the optimal solution of the minimization. Then, replacing wt = Qxt +w∗

in eq. A.11:
Qyt+1 = (ρI − βH)Qyt − βHQxt (A.12)

with J = H(Qxt + w∗)− b = H(Qxt +H−1b)− b = HQxt.
Then, expanding H with its eigendecomposition,

Qyt+1 = ρQyt − βQdiag(h)QTQyt − βQdiag(h)QTQxt. (A.13)

Left-multiplying by QT ,and canceling out Q due to orthogonality,

yt+1 = ρyt − βdiag(h)yt − βdiag(h)xt. (A.14)

Similarly for eq. A.10, replacing zt = Qyt yields

xt+1 = xt + yt+1. (A.15)

Note that each pair formed by the corresponding element of yt and xt is an independent system with only 2 variables, since
the pairs do not interact (eq. A.14 and A.15 only contain element-wise operations). From now on, we will be working on the
ith element of each vector.

We can thus write eq. A.14 and A.15 (for a single element i of each) as a vector equation:[
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]
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The matrix on the left is necessary to express the fact that the yt+1 factor in eq. A.15 must be moved to the left-hand side,
which corresponds to iteration t+ 1 (xt+1 − yt+1 = xt). Left-multiplying eq. A.16 by the inverse,2[
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This is the transition matrix Ri that characterizes the iteration, and taking its power models multiple iterations in closed-form:[
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]
= Rti

[
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]
. (A.18)

The two eigenvalues of Ri are given in closed-form by:
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1

2
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)
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1For the general case, the momentum parameter ρ is simply replaced by the slightly perturbed value ρ− βλ (since ρ � βλ), and similar derivations
follow.

2We have:
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Figure A.1. Convergence rate as a function of hyper-parameters ρ, β, and Hessian eigenvalue hi. Lower values (brighter) are better. The
white areas show regions of non-convergence.

The series in eq. A.18 converges when |eig (Ri)| < 1 simultaneously for both eigenvalues, which is equivalent to:

3
2βhi − 1 < ρ < 1 + βhi, (A.20)

with ρ > 0 and βhi > 0. Note that when using the Gauss-Newton approximation of the Hessian, hi > 0 and thus the last
condition simplifies to β > 0.

Since eq. A.20 has to be satisfied for every eigenvalue, we have

3
2βhmax − 1 < ρ < 1 + βhmin, (A.21)

with hmin and hmax the smallest and largest eigenvalues of the Hessian H , respectively, proving the result.
The rate of convergence is the largest of the two values |eig (Ri)|. When the argument of the square root in eq. A.19 is

non-negative, it does not admit an easy interpretation; however, when it is negative, eq. A.19 simplifies to:

|eig (Ri)| =
√
ρ− βhi. (A.22)

A.2.1 Graphical interpretation

The convergence rate for a single eigenvalue is illustrated in Figure A.1. Graphically, the regions of convergence for different
eigenvalues will differ only by a scale factor along the βhi axis (horizontal stretching of Figure A.1). Moreover, the largest
possible range of βhi values is obtained when ρ = 1, and that range is 0 < βhi <

4
3 . We can infer that the intersection of the

regions of convergence for several eigenvalues will be maximized with ρ = 1, for any fixed β.

A.3. Proof of guaranteed descent on general non-convex functions

Theorem A.2. Let the Hessian Ĥt+1 be positive definite (which holds when the objective is convex or when Gauss-Newton
approximation and trust region are used). Then the update zt+1 in Algorithm 1 is a descent direction when β and ρ are chosen
according to eq. 18, and zt+1 6= 0.

Proof. To show that the update represents a descent direction, it suffices to show that JT zt+1 < 0 (where we have written
J = J(wt) to simplify notation). Since the surrogate Hessian Ĥt+1 is positive definite (PD) by construction, the update
zt+1 = ρzt − β∆zt+1

satisfies zTt+1Ĥt+1zt+1 > 0. It is therefore sufficient to prove that JT zt+1 + zTt+1Ĥt+1zt+1 ≤ 0.
It follows from their definition in eq. (18) that ρ and β minimise the RHS of
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In particular, they minimise a quadratic form in (−β, ρ) with the following symmetric Hessian
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Moreover, for any x = (x1, x2) ∈ R2,
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Consequently, K is guaranteed to be Positive Semidefinite (PSD) and the form is convex with zero gradient at the minimum.
Since zt+1 6= 0, it follows that at least one of the following holds: (1) K is invertible and hence PD (rather than simply PSD);
(2) one of factors zt = 0 or ∆zt+1 = 0 is zero; (3) the factors zt = 0 and ∆zt+1 = 0 are colinear. In the first case we have,
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Since the inverse of a PD matrix is PD, the RHS of eq. (A.23) is negative. Further, as Ĥt+1 is PD, it follows that final term
in eq. (A.23) is positive, thus K is PD, showing that JT zt+1 < 0.

For the second case in which zt = 0 or ∆zt+1 = 0, the system reduces to a trivial convex second order equation in ρ or β
with a negative solution.

Finally, consider the case when zt and ∆zt+1
are colinear but both non-negative. Writing ∆zt+1

= αzt for α ∈ R, we note
that at the minimum we have

JT zt+1 +
1

2
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Thus at the minimum (A.27) is negative, closing the proof.

Remark. It follows from the definition of ρ and β that if J(wt) = 0, then zt+1 = 0.

Remark. If zt+1 = 0, then zt+2 = −βJ(wt+1), i.e. we reset the momentum variable z. This guarantees that the algorithm
takes a strictly descending direction at least every two steps.



B. Additional results and implementation details
B.1. Configurations for small-scale dataset experiments

Here we provide additional details of the small-scale datasets described in sec. 4. As noted in the main paper, to give
every method the best chance of working effectively we first perform a grid-search over its hyperparameters. This search
is performed for each of the small-scale dataset experiments. For each first order solver, we select the configuration which
achieves the lowest average error across the final ten iterations of a trajectory. The values included in the search were:

• SGD with momentum: learning rates: Γ, momentum values: 0.9, 0.95, 0.99

• Adam: learning rates Γ, β1 : 0.9, 0.99, β2 : 0.99, 0.999

where Γ = 0.1, 0.05, 0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005.

B.2. Hyper-parameter and gradient evolution

Figure B.2. Hyper-parameter evolution during training. Average momentum ρ (left), learning rate β (middle), and trust region λ (right),
for each epoch for the basic CNN on CIFAR10, with and without batch normalisation (BN). To make their scales comparable, we plot λ
divided by its initial value (which is λ0 = 1 with batch normalisation and λ0 = 10 without).

Figure B.3. Gradient evolution during training. Average gradient norm during each epoch for the basic CNN on CIFAR-10, with and
without batch normalisation (BN).

B.3. Random architecture experiment setup

Each optimiser is tested on 50 random networks, that are held fixed across all methods. The number of convolutional layers
is uniformly sampled between 3 and 10, and the number of channels in each layer is drawn uniformly, in powers of two,
between 32 and 256. The kernel size is 3× 3. Following each convolution (except the last one) there is a ReLU activation and
batch-normalisation, and 3× 3 max-pooling (stride 2) is placed with 50% chance. Training and evaluation is performed on
CIFAR10, with a batch size of 256.



B.4. Wall-Clock time results with Conjugate Gradient

Figure B.4. Training error vs. wall clock time (basic CIFAR-10 model). The time axis is logarithmic to show a comparison with
conjugate-gradient-based Hessian-free optimisation. Due to the CG iterations, it takes an order of magnitude more time to converge than
first-order solvers and our proposed second-order solver, despite the efficient GPU implementation.

B.5. Experiments without a momentum hyper-parameter (fixed ρ = 1)

Figure B.5. Training with fixed ρ = 1. Basic CNN architecture on CIFAR-10 without and with batch normalisation, respectively. Both
settings use automatic tuning of the remaining hyper-parameters (by adapting eq. 18).
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