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Background modeling on tensor field has recently been proposed for foreground detection tasks. Taking

into account the Riemannian structure of the tensor manifold, recent research has focused on

developing parametric methods on the tensor domain, e.g. mixture of Gaussians (GMM). However, in

some scenarios, simple parametric models do not accurately explain the physical processes. Kernel

density estimators (KDEs) have been successful to model, on Euclidean sample spaces, the nonpara-

metric nature of complex, time varying, and non-static backgrounds. Founded on a mathematically

rigorous KDE paradigm on general Riemannian manifolds recently proposed in the literature, we define

a KDE specifically to operate on the tensor manifold in order to nonparametrically reformulate the

existing tensor-based algorithms. We present a mathematically sound framework for nonparametric

modeling on tensor field to foreground detection. We endow the tensor manifold with two well-

founded Riemannian metrics, i.e. Affine-Invariant and Log-Euclidean. Theoretical aspects are presented

and the metrics are compared experimentally. By inducing a space with a null curvature, the Log-

Euclidean metric considerably simplifies the scheme, from a practical point of view, while maintaining

the mathematical soundness and the excellent segmentation performance. Theoretic analysis and

experimental results demonstrate the promise and effectiveness of this framework.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Foreground detection is a crucial aspect in the understanding
and analysis of video sequences. It is often described as the
process that subdivides an image into regions of interest and
background. This task usually relies on the extraction of suitable
features from the image that are highly discriminative.

Statistical modeling in the color/intensity space is a widely used
approach for background modeling to foreground detection.
However, there are situations where these features may not be
distinct enough, i.e. sometimes statistical modeling directly on
image values is not enough to achieve a good discrimination (e.g.
dynamic scenes, illumination variation, etc.). Thus, the image may
be converted into a more information rich form, such as a structure

tensor field [1–3] to yield latent discriminating features (e.g. in
which can be encoded color, gradients, filters responses, etc.).
Texture is one of the most important features in images, and
therefore its consideration can greatly improve image analysis.

The structure tensor [3–6] has been introduced for such
texture analysis as a fast local computation method providing a
measure of the presence of edges and their orientation. In other
ll rights reserved.
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cases, the image is already in tensor form. For example, tensor
MRI may be represented in this manner from the direction of
water diffusion at each pixel. In this case, brain structures such as
nerve bundles comprise regions of similarly oriented tensors as
water diffuses along the fibers [7,8].

Simple attempts at tensors statistical analysis are based on
statistical models of the linear tensor coefficients. However, the
tensor space do not conform to Euclidean geometry, because is
not a vector space (e.g. the space is not closed under multi-
plication with negative scalars), thus standard linear statistical
techniques do not apply [9]. Although the classical Euclidean
operations are well adapted to general square matrices (d� d),
they are practically and theoretically unsatisfactory for tensors,
which are very specific matrices, i.e. symmetric positive-definite
(Sþd ). Tensors form a convex half-cone in the vector space of
matrices, i.e. Sþd lies on a Riemannian manifold (differentiable
manifold equipped with a Riemannian metric) [10].

Background modeling on tensor field has only recently been
proposed for foreground detection tasks. In order to exploit the
information present in all the structure tensor components and
taking into account the Riemannian structure of the tensor
manifold, previous work has focused on developing parametric
methods on the tensor domain, e.g. mixture of Gaussians models
(GMM) [11,2]. This way, the nice structure tensor properties for
texture discrimination are fully exploited.
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In [11], Caseiro et al. proposed a foreground detection method
for tensor-valued images based on the definition of GMM on the
tensor domain. They reviewed the geometrical properties of the
tensor space and focused on the characterization of the mean,
covariance and Normal law on that manifold. They proposed an
online K-means approximation of the Expectation Maximization
(EM) algorithm to estimate the mixture parameters based on the
Affine-Invariant Riemannian metric [12,13]. This Riemannian
metric has excellent theoretical properties and provides powerful
processing tools, but essentially due to the curvature induced on
the tensor space the computational burden can be high. To
overcome this limitation, based on a novel vector space structure
for tensors, a new metric called Log-Euclidean was presented in
[14]. A space with a null curvature is obtained, while the excellent
theoretical properties are preserved. This novel view-point on the
tensor space provides a particularly powerful and simple-to-use
framework to process tensors. Hence, classical statistical tools
usually reserved to vectors are simply and efficiently generalized
to tensors in the Log-Euclidean framework. This metric also has
excellent theoretical properties and yields similar results in
practice, but with much simpler and faster computations.

In order to speed up the foreground segmentation process,
Caseiro et al. [2] presented a novel and faster online K-means
algorithm based on the Log-Euclidean metric, while conserving
the theoretical properties. They presented the theoretical aspects
and the Affine-Invariant and Log-Euclidean frameworks are com-
pared. From a practical point of view, results are similar, but the
Log-Euclidean is much faster (at least two times faster).

However, in some scenarios, the density function that
describes the data is more complex and simple parametric models
do not accurately explain the physical processes, i.e. the para-
metric approach cannot model the nonparametric nature of
complex, time varying and non-static backgrounds. As shown by
Elgammal et al. [15,16], kernel density estimators (KDEs) have
been successful to model, on the Euclidean sample spaces, the
nonparametric nature of complex physical processes associated
with the foreground segmentation problem. Seeing that recently,
in the mathematics community, was proposed and rigorously
defined the KDE on general Riemannian manifolds [17], it would
be interesting to nonparametrically reformulate the existing
tensor-based GMM algorithms [2,11]. The idea is to leave the
data to show the structure lying beyond them, instead of
imposing one.

This journal paper extends a previous conference publication
where the nonparametric Riemannian framework on tensor field
was presented for the first time [1].

1.1. Paper contributions

In this paper, we present a novel nonparametric Riemannian
framework on the tensor manifold, and evaluate its usefulness to
foreground segmentation. The main contributions of our work are
as follows:
�
 It is well known that the differential geometry is not a trivial
subject and even nowadays, in general, an easy introduction to
differential geometry is hard to find. Therefore, throughout the
paper, our goal is not only to present the proposed nonpara-
metric tensor-based framework but is also our intention,
whenever possible, to provide the necessary knowledge about
differential geometry in order to enable the average reader to
understand and implement the derived approaches.

�
 Founded on the mathematically rigorous KDE on general

Riemannian manifolds proposed by Pelletier [17], we define
a KDE specifically to operate on the tensor manifold. To
accomplish this, the tensor manifold is endowed with two
Riemannian metrics (Affine-Invariant and Log-Euclidean) and
with a Euclidean metric to prove the benefits of take into
account the Riemannian structure. By inducing a space with a
null curvature, the Log-Euclidean metric considerably simpli-
fies the scheme.

�
 We present a mathematically sound framework for nonpara-

metric modeling on tensor field to foreground detection. In the
literature, Caseiro et al. [2,11] were the only one to use the
paradigm of background modeling on tensor field to fore-
ground detection. Taking into account that their work is based
on a parametric approach (GMM) on the tensor domain, to the
best of our knowledge, this is the first time that a nonpara-
metric modeling technique on the tensor domain is applied to
the foreground detection problem. We generalized herein the
nonparametric background model proposed by Elgammal
[15,16], one of the most widely used per-pixel models, from
pixel domain (vector space features) to tensor domain. We
nonparametrically reformulated the tensor-based GMM pro-
posed by Caseiro et al. [2] in a similar way to what Elgammal
[15,16] did in relation to Stauffer’s work [18] (GMM on the
vectorial domain).

The remainder of the paper is organized as follows: Section 2
reviews the related work in the field of foreground segmentation.
In Section 3, we describe the tensor descriptors used in this paper,
namely the structure tensor (ST) [3] and the region covariance
matrix (RCM) [19]. Section 4 provides a brief introduction to the
differential geometry and the main notions of the geometric
properties of the general Riemannian manifolds. In Section 5,
we focus on the space of symmetric positive definite matrices
describing the main geometric properties of this manifold
endowed with the standard Euclidean metric and with two
Riemannian metrics (Affine-Invariant and Log-Euclidean). In
Section 6, we present a proper derivation of KDE on general
Riemannian manifolds and we extend this concept to the tensor
manifold endowed with all the three metrics previously referred.
Section 7 demonstrates the experimental results conducted on
several challenging video sequences presented in previous litera-
ture. Section 8 summarizes the paper.
2. Related work

For the sake of brevity, the related work description will be
neither rigorous nor complete, but we want to at least outline
some of the key ideas. Please refer to [20–25] for a set of excellent
surveys.

Over the years, a considerable number of background models
for foreground detection have been proposed. These models can
be broadly classified into pixel-wise (temporal) and block-wise

(spatio-temporal) models.
Pixel-wise models: They rely on the separation of a statistical

model for each pixel and the pixel models are learned entirely
from each pixel history. The background model can be parame-
trically estimated using a single Gaussian distribution, a mixture
of Gaussians (GMM) or through Bayesian approaches. Once the
per-pixel background model was derived, the likelihood of each
incident pixel can be calculated and labeled as belonging, or not,
to the background. In [26], Wren et al. modeled the statistical
distribution of each color pixel with a single three-dimensional
Gaussian, whose parameters are regularly updated by a simple
adaptive filter. This model works for static or slowly changing
backgrounds but fails in the case of dynamic backgrounds. To
handle with possible data multi-modalities, Friedman et al. [27]
extended the concept of Gaussian distribution by using a mixture
of Gaussian distributions (GMM). In their work, the intensity is



R. Caseiro et al. / Pattern Recognition 45 (2012) 3997–4017 3999
modeled by a mixture of three Gaussians (background, moving
object and shadow) and the pixel model is learned by an
incremental EM algorithm. Stauffer et al. [18] proposed to
represent each color pixel as a mixture of (3–5) Gaussians
distributions to capture the multi-modal nature of the back-
ground and the mixture parameters are updated using an online
K-means approximation of the EM algorithm to meet real time
requirements. Based on the persistence and the variance of each
of the Gaussians distributions, a mixture background is deter-
mined. In [28], Porikli et al. model each color pixel as a set of
layered Normal distributions, and used a recursive Bayesian
learning approach not only to estimate the mean and variance
of each layer but also to obtain probability distributions of the
mean and variance. Their Bayesian approach can also estimate the
ideal number of necessary layers for representing each pixel.

In some scenarios, the density function that describes the pixel
data is more complex and simple parametric models do not
accurately explain the physical processes, i.e. the parametric
approach cannot model the nonparametric nature of complex,
time varying and non-static backgrounds. Therefore, one needs to
employ nonparametric estimation techniques that do not make
any assumptions about the pdf, except the mild assumption that
pdf are smooth functions, and can represent arbitrary pdfs given
sufficient data. Elgammal et al. [15,16] proposed the use of
Gaussian kernels (KDE) to estimate the density function of
each pixel from its past samples. Foreground detection is per-
formed by thresholding the probability of the observed samples.
The pixel-based methods mentioned above do not consider the
correlation between pixels. In general, they will fail when the
scenes to be modeled are dynamic natural scenes, which include
repetitive motions like swaying vegetation, waving trees, rippling
water, etc.

Block-wise models: In the case of block-based models, the
background model of a pixel depends not only on that pixel but
also on the nearby pixels (e.g. [29,30]). These models consider
spatial information an essential element to understand the
structure of the scene. In [31], Oliver et al. considered the whole
image as a single block and used the best M eigenvectors
generated by applying PCA to a set of training images to represent
the background. In [32], Monnet et al. divided each frame into
blocks and then mapped each block into a lower dimensional
feature space whose basis vectors were incrementally updated. A
prediction mechanism was used in the lower dimensional feature
space for background–foreground differentiation. In [33], Seki
et al. proposed a background subtraction method in which the
frames were divided into blocks and co-occurrences of image
variations at neighboring blocks were used for dynamically
narrowing the permissible range of background image variations.
One major disadvantage of these block-based methods is that the
boundary of the foreground objects cannot be delineated exactly.
In recent years, researchers have been concentrating more on
incorporating spatial aspect into background modeling to take
advantage of the correlation that exists between neighboring
pixels [34]. Thus, the background model of a pixel also depends
on its neighbors. Jabri et al. [35] were one of the first to use image
gradient information as a feature. They presented an approach to
detect people by an adaptive fusion of color and edge information
using confidence maps. In [36], Javed et al. used gradient
magnitude and orientation, as well as color information, to create
a five-dimensional mixture of Gaussian algorithm to achieve a
more accurate background subtraction. In [37], Pless used a
mixture-of-Gaussians distribution for each pixel in the feature
space defined by intensity and the spatio-temporal derivatives of
intensity at that pixel. Sheikh et al. [38] proposed to model the
full background with a single distribution, instead of one dis-
tribution per pixel, and included image pixel position into the
model, unifying the temporal and spatial consistencies into a
single model. They used a MAP-MRF framework to stress spatial
context to detect moving objects. In [39], Babacan et al. used a
spatio-temporal hybrid model. Gibbs–Markov random field was
used to model spatial interactions and Gaussian mixture model
was used to model temporal interactions.

Some researchers also used texture based methods to incor-
porate spatial aspect into background models (e.g. [40–42]).
Spatial variation information, such as gradient (or edge) feature,
helps to improve the reliability of structure change detection.
A textured-based method was used in [43], where each pixel is
non-parametrically modeled as a group of adaptive local binary
pattern (LBP) histograms that are calculated over a circular region
around the pixel, which means that no assumptions about the
underlying distributions are needed. Odobez et al. [44] proposed a
robust multi-layer background subtraction technique, using local
texture features represented by local binary patterns (LBPs) and
photometric invariant color measurements in RGB color space.
They intend to overcome the problems of LBP single-layer
approach in uniform regions, in situations of light variation.
Recently, the concept of local binary patterns (LBPs) proposed in
[43] was extended, from spatial to spatio-temporal domain. Zhang
et al. [45] modeled each pixel as a group of STLBP (spatio-
temporal local binary pattern) histograms. Several variants of
background models, based on the LBP features, have been pro-
posed in the literature, namely in [46–48].

Finally, there are several other important works in the
literature to address some specific problems in the foreground
segmentation task that we want to remark, e.g. highly dynamic/
complex scenes [49,50], highly dynamic scenes and real time
requirements [51], sudden illumination changes [52] and freely
moving cameras [53,54].

To the best of our knowledge, Caseiro et al. [2,11] were the
only ones to use the paradigm of background modeling on tensor
field to foreground detection. They proposed a tensor-based
parametric approach (GMM).
3. Tensor descriptors

Positive definite symmetric matrices (tensors) are widely used
in image processing. As previously referred, two typical applica-
tions capture structural information of an image by means of a
structure tensor (ST) [4,3,5,6] and characterize the diffusion of
water molecules in DT-MRI [7,8,55]. Region covariance matrices
(RCMs), which are also tensors, have recently been a popular
choice for versatile tasks like texture classification [19], object
detection [56] and tracking [57] in video sequences, due to their
powerful properties as local descriptor and their low computa-
tional demands. Taking into account that the RCM has some
special properties that can help in more difficult scene conditions
(e.g. image noise), we also present herein the RCM as a descriptor
for foreground detection. This section outlines the similarities of
RCM to the ST.
3.1. Structure tensor (ST)

The structure tensor analyzes dependencies between different
low-level features and it gained great success in corner detection
[58], optical flow estimation [59], etc. Consider that for each
image pixel we have a window of size w�w centered at that pixel
and let R be the set of S¼w2 samples inside the window (pixel
neighborhood). Each pixel p in the region R is represented by a
d-dimensional feature vector vp. The classical structure tensor T,
with only gradient information, is a 2�2 matrix defined as the
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product of the image derivatives and formed as follows:
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with vp ¼ ½Ip,x Ip,y�, where I is a gray image, Kr is a Gaussian kernel
with standard deviation r, and ðIp,x,Ip,yÞ are the first order
derivatives. Therefore, it analyzes the dependency of the image
derivatives without normalization (as opposed to covariance
matrices). The structure tensor represents the local orientation
by its eigenvectors and eigenvalues.

For vector-valued images, e.g. color images, the structure
tensor Tc may be formed by summing along the color channels
(see Eq. (2)), where C is the number of color channels and
vi

p ¼ ½I
i
p,x Ii

p,y� are the first order derivatives for each color channel
i [60,5]. In general, augmenting the feature vector improves
segmentation by increasing the information available. For exam-
ple, in [5] was included the intensity information with the image
derivatives. Since for foreground segmentation purposes we want
to model the dependencies of multiple low-level features, includ-
ing for example color/intensity, texture, first and second order
derivatives, filter responses, etc., we use the generalized form of
the structure tensor [4,61] as descriptor. The generalized struc-
ture tensor TG is a powerful analytical tool that can model and
estimate the position and orientation of feature patterns and is
defined by

TG ¼
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where vp is the d-dimensional feature vector containing the low-
level features to be considered. Therefore, d features yield a
symmetric d�d generalized structure tensor TG, which is used
to describe the unnormalized feature dependencies within a local
image patch.

The structure tensor descriptor owns good properties. First of
all, it provides an effective way to fuse different features. The
structure tensor descriptor integrates two distinct levels: pixel
level and region level. At the pixel level, appearance properties,
i.e. intensity, gradient, etc., are used to describe each pixel. In the
region level, the correlation of features extracted at the pixel level
is represented by the structure tensor that is calculated over a
square region around the pixel. Computing the structure tensor
descriptor from multiple information sources yields a straightfor-
ward technique for a low-dimensional feature representation,
since a structure tensor contains in its diagonal elements the
variance of each source channel and off diagonal the correlation
values between the involved modalities, which is very important
for dynamic background modeling. The second advantage is scale
invariant since the order of structure tensor descriptor does not
depend on the window size, but on the dimension of the feature
vector. This property enables comparing two windows without
being restricted to the same window size. Thirdly, it provides
some invariance to illumination since the structure tensor
descriptor contains the partial derivatives which can compensate
small illumination changes.

3.2. Region covariance matrix (RCM)

Here, we present a brief overview of the region covariance
matrix [19]. Let I be a one-dimensional intensity or a three-
dimensional color image, and F be the d-dimensional feature
image extracted from I

Fðx,yÞ ¼FðI,x,yÞ ð4Þ

SR ¼
1

S�1

XS

p ¼ 1

ðvp�mRÞðvp�mRÞ
T

ð5Þ

where the function F can be any mapping such as intensity, color,
texture, gradients, edge magnitude/orientation, and filter
responses. This list can be extended by including higher order
derivatives, texture scores, and temporal frame differences. For a
given region (w�w window) R� F, let fvpgp ¼ 1,...,S (S¼w2) be the
d-dimensional feature vectors inside R. The region R is repre-
sented with the d� d covariance matrix SR of the feature points
given by Eq. (5), where mR is the vector of the means of the
corresponding features for the points within the region R.
In practice, the difference between the structure tensor (ST) and
the region covariance matrix (RCM) is basically the zero-mean
normalization performed in the covariance calculus.

There are several advantages of using covariance matrices as
region descriptors over the structure tensor descriptor that are
important for foreground segmentation. Firstly, the noise corrupt-
ing individual samples are largely filtered out with the average
filter during covariance computation. Secondly, the covariance is
invariant to mean changes such as identical shifting of color
values. This is very valuable when scenes are under some varying
illumination conditions, i.e. due to the zero-mean normalization
by subtraction the sample mean, the descriptor achieves some
invariance in the case of photometric and illumination changes.
4. Differential geometry

In this section, we will try to briefly review some basic theory
of differential geometry and the main notions from Riemannian
geometry that will be required in the sequel. For the sake of
brevity, our treatment will not be complete, but we want to at
least outline some of the key concepts that we consider crucial to
understand the proposed framework. We try to make the
paper self contained and at the same time keep the notions of
differential geometry that we use to a minimum. A thorough
introduction to differential geometry can be found in [10,62–64].
We recommend Barret’s book [10] for a more comprehensive
treatment.

Manifold: letM be a n-manifold. A manifoldM is a topological
space that is locally similar to an Euclidean space Rn. This is
formally achieved by building mappings which make each small
patch of a manifold similar to an open set in the Euclidean space
and this similarity is defined by the coordinate charts at each
point. It is generally not possible to define global coordinates
which make the whole manifold look like an Euclidean space.

Nevertheless, coordinate charts are an essential tool for
addressing fundamental notions such as the differentiability of a
function on a manifold. To do this, we need to answer the
following questions: How do we find these patches which look
similar to Euclidean space? How are the different patches related
to each other?

Formally, a manifold, M is a Hausdorff topological space that
is locally homeomorphic to an Euclidean space. Points can be
separated by neighborhoods such that for each point PAM there
exists a neighborhood U �M containing P and an associated
homeomorphism j : U- ~U (one-to-one, onto and continuous map-
ping in both directions) from U to some Euclidean space Rn, such
that jðUÞ is an open set in Rn, i.e. jðUÞ ¼ ~U �Rn.

The neighborhood U and its associated mapping j form
together a coordinate chart ðU ,jÞ. Given a coordinate chart ðU ,jÞ
and PAU , the set U is called a coordinate domain or a coordinate
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neighborhood. The map j is denominated as local coordinate map,
and the component functions of j are called local coordinates on
U , i.e. the chart defines a local coordinate system x¼ ðx1, . . . ,xnÞ

T .
The elements of jðPÞARn are called the local coordinates of P in
the chart ðU ,jÞ. The interest of the notion of chart ðU ,jÞ is that it
makes it possible to study objects associated with U by bringing
them to the subset jðUÞ of Rn.

Riemannian manifold: It is a differentiable manifold M
endowed with a Riemannian metric g. It is possible to define
on the same manifold different metrics and obtain different
Riemannian manifolds. The metric is chosen to have geometrical
significance such as being invariant to a set of geometric
transformations.

Tangent space: for differentiable manifolds, it is possible to
define the derivatives of curves on the manifold. The derivatives
at a point PAM lie on a vector space TPM, which is the tangent

space at that point. The tangent space can be thought of as the set
of allowed velocities for a point constrained to move on the
manifold, i.e. the tangent space TPM, defined 8PAM, is simply a
vector space, attached to P, which contains the tangent vectors to
all curves onM passing through P (set of all tangent vectors at P).

Riemannian metric: a Riemannian metric is defined by a continuous
collection of inner products / � , �SP, defined 8PAM on the tangent
space TPM. For continuity, the inner product vary smoothly with P.
We denote this inner product by g and for two tangent vectors
u,vATPM the inner product is written as gPðu,vÞ. The inner product

induces a norm for u given by JuJ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gPðu,uÞ

p
. Given a chart ðU ,jÞ at

P with a local coordinate system x¼ ðx1, . . . ,xnÞ, it is possible to
determine a basis @=@x¼ ð@1, . . . ,@nÞ of the tangent space TPM
(@i¼shorter notation for @=@xi). Any element of the TPM can be

expressed in the form
Pn

i ¼ 1 xi@i (Fig. 1). We can express the metric in

this basis by a ðn� nÞ symmetric, bilinear and positive-definite form
GPðxÞ ¼ ½gijðxÞ�P given by the inner products gijðxÞ ¼/@i,@jSP.

The form GPðxÞ is called the local representation of the Rieman-

nian metric. Tangents can now be represented as vectors in this
basis and relative to this basis the inner product can be written as
a symmetric positive definite matrix. The Riemannian metric is an
inherently geometric notion. It does not require the definition of a
coordinate chart or a basis for TPM. Different charts lead to
different coordinates for tangent vectors and different Rieman-
nian metric matrices, but for a given pair of tangents the inner
product is independent of the basis.

Geodesic: for Riemannian manifolds, tangents vectors (on the
tangent space) and geodesics (on the manifold) are closely related
(see Fig. 1). Distances on manifolds are defined in terms of
minimum length curves between points on the manifold.

The geodesic between two points gð0Þ and gð1Þ on a Rieman-
nian manifold is locally defined as the minimum length curve
gðtÞ : I¼ ½0;1� �R-M over all possible smooth curves on the
manifold connecting these points. This minimum length is called
geodesic or intrinsic distance (Dðgð0Þ,gð1ÞÞ ¼/ _gð0Þ, _gð0ÞS1=2

gð0Þ).
Fig. 1. Left: The geodesic gðtÞ defined by the starting point P and the initial velocity _gð
Q ¼ expP½ _gð0Þ�. Right: Local coordinate system, geodesic gðtÞ, tangent space and expon

[9,65] respectively).
The geodesic concept is the equivalent of straight line in
Euclidean spaces, defined as the locally length-minimizing piece-
wise smooth curve and characterized by the fact that it is
autoparallel, e.g. the field of tangent vectors _gðtÞ stays parallel
along gðtÞ (the velocity is constant along the geodesic). This
property of having zero acceleration is sometimes used to define
a geodesic. It is equivalent to say that, in local coordinates
notation, a curve is a geodesic if and only if it is the solution of
the n second order Euler–Lagrange equations (where Gk

ij is the
Christoffel symbols of the second kind [10])

d2xk

dt2
þ
Xn

i,j ¼ 1

Gk
ij

dxi

dt

dxj

dt
¼ 0 8 k¼ 1, . . . ,n ð6Þ

Let gð0Þ ¼ P, given a tangent vector uATPM there exists a
unique geodesic gðtÞ starting at P with initial velocity _gð0Þ ¼ u.
Therefore, the geodesic gðtÞ is uniquely defined by its starting
point P and its initial velocity _gð0Þ. The endpoint gð1Þ of the
geodesic curve can be computed by applying the exponential map

at P, such that gð1Þ ¼ expPð _gð0ÞÞ. Two maps are defined for
mapping points between the manifold and a tangent space
(exponential map and logarithm map).

Exponential map: the exponential map, expP : TPM-M is a
mapping between the tangent space TPM and the corresponding
manifoldM. It maps the tangent vector _gð0Þ ¼ u at point P¼ gð0Þ
to the point reached by the geodesic at time step one,
gð1Þ ¼ expPð _gð0ÞÞ. The origin of the TPM is mapped to the point
itself, expPð0Þ ¼ P. For each point PAM, there exists a neighbor-
hood ~U of the origin in TPM, such that expP is a diffeomorphism

from ~U onto a neighborhood U of P.
Logarithm map: in general, the exponential map is onto but

only one-to-one in a neighborhood of P. Therefore, the inverse
mapping, given by the logarithm map logP :M-TpM is uniquely
defined only around the neighborhood of the point P. Over this
neighborhood U , we can define the inverse of the exponential
map, i.e. the mapping from U to ~U is the logarithm map

logP ¼ exp�1
P : U- ~U . It maps any point Q AU to the unique

tangent vector uATPM that is the initial velocity _gð0Þ of the
unique geodesic gðtÞ between gð0Þ ¼ P and gð1Þ ¼Q . In other
words, for two points P and Q on the manifold M the tangent
vector to the geodesic curve from P to Q is defined as
_gð0Þ ¼ logPðgð1ÞÞ.

Normal neighborhood: the neighborhood ~U is not necessarily
convex. However, ~U is star-shaped, i.e. for any point A ~U , the line
joining the point to the origin is contained in ~U . The image of a
star-shaped neighborhood under the exponential map is a neigh-
borhood of P on the manifold. This neighborhood is the normal

neighborhood. The exponential map can be used to define suitable
coordinates for normal neighborhoods. Let ~U be a star-shaped
neighborhood at the origin in TPM and let U be its image
under the exponential map, i.e., U is a normal neighborhood of P.
Let ei, 8i¼ 1, . . . ,n be an orthonormal coordinate system for TPM.
0Þ. The endpoint Q ¼ gð1Þ is computed by applying the exponential map, such that

ential map at PAM (these images were adapted from the originals presented in
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Therefore gðei,ejÞ ¼ 0 if ia j and gðei,ejÞ ¼ 1 if i¼ j. The normal

coordinate system of P is the coordinate chart ðU ,jÞ which maps
Q AU to the coordinates of logPðQ Þ in the orthonormal coordinate
system ) logPðQ Þ ¼

Pn
i ¼ 1 jiðQ Þei, where jiðQ Þ is the ith coordi-

nate of jðQ ÞARn [10].
Connection: the curvature concept plays an important role in

the expression of the KDE on manifolds. Before introducing the
curvature notion, we need to precise the notion of connection r

[10]. It is crucial in geometry since it allows to transport
quantities along curves in a consistent manner and, ultimately,
to compare local geometries defined at different manifold loca-
tions [66]. The connection makes it possible to map any tangent
space TPM onto another tangent space TQM.

The need of such a mapping arises: imagine that we want to
transport a vector, in a parallel manner, from its original point P to Q .
In general, the parallel transport procedure is dependent on the
choice of the coordinate system, which is not desirable. This
dependency directly comes from the fact that the classical directional
derivative does not behave well under changes of the coordinate
system. It is possible to solve this problem, i.e. to make the
differentiation intrinsic, by considering the covariant derivative. The
covariant derivative is a way of specifying a derivative along tangent
vectors of a manifold, i.e. the orthogonal projection of the usual
derivative of the vector fields onto the tangent space.

The canonical affine connection on a Riemannian manifold is
the Levi-Civita connection [67] and is directly defined from the
covariant derivative. It parallel transports a tangent vector along a
curve while preserving its inner product (it is compatible with the
metric, i.e. the covariant derivative of the metric is zero). The
Levi-Civita coefficients are defined, in each local chart by the
Christoffel symbols of the second kind Gk

ij as follows:

r
k
ij ¼Gk

ij ¼ gklGijl ¼
1

2
gkl

@gjl

@xi
þ
@gil

@xj
�
@gij

@xl

� �
ð7Þ

8i,j,k,l¼ 1, . . . ,n, using Einstein’s summation convention [62] and
gkl being the inverse of the metric.

Riemannian curvature tensor ðRÞ: the notion of curvature for
Riemannian manifolds of dimension Z3 cannot be fully
described by a scalar quantity at each point PAM. It can be
expressed in terms of the metric tensor and its first and second
derivatives. The Riemann curvature tensor measures the covar-
iant derivatives non-commutativity. In local coordinates, it can be
expressed through the Christoffel symbols as follows:

Rl
ijk ¼ @jG

l
ki�@kG

l
jiþG

l
jmG

m
ki�G

l
kmG

m
ji ð8Þ

Ricci curvature tensor ðRÞ: the Ricci tensor is defined as the
contraction of the Riemann curvature tensor ðRÞ and can be
thought of as the Laplacian of the Riemannian metric e.g. is a
way to measure how much n-dimensional volumes in regions of
an n-dimensional manifold differ from the volumes of equivalent
regions in Rn. For Riemannian manifolds up to dimension three
the Ricci tensor completely describe its curvature. For manifolds
of dimension Z4 it become insufficient. However, it plays an
crucial role in Section 6 to define the KDE on the tensor space. The
Ricci tensor is given as follows:

Rij ¼Rk
ijk ¼Rijklg

kl ð9Þ

5. Tensor manifold (SPD)

The space of d�d symmetric positive-definite matrices Sþd is
probably the most important set of matrices that one deals with
in various branches of mathematics, numerical analysis, physics,
mechanics, probability, medical imaging and other fundamental
and engineering sciences.
Recall that a real d� d matrix A is symmetric if A¼AT . We
denote by Sd the vector space of the d�d symmetric matrices. We
say that a symmetric matrice AASd is positive definite if xT Ax40
for all nonzero xARd. Although the space of symmetric matrices
Sd is a vector space, the space of symmetric positive-definite
matrices Sþd (also called tensors by abuse of language) is a
differentiable manifold with a natural Riemannian structure [9].

The specific forms of the operators (metric, inner product,
geodesic distance, maps, etc.) defined in Section 4 for the general
Riemannian manifolds depend on the manifold and the metric.

Because of its importance, the set of Sþd , as a Riemannian
manifold, has been analyzed from several perspectives, e.g.
different Riemannian metrics and intrinsic structures were
defined [9,12–14]. In this section, we present the explicit
formulae for the tensor manifold Sþd endowed with the three
metrics studied in this paper. Namely, we will present
the conventional Euclidean metric (E), then we describe the
geometry of Sþd equipped with an Affine-Invariant Riemannian
metric (AI) [12,13] derived from the Fisher information matrix
[68], and finally we exploit the properties of a new metric, based
on a novel vector space structure for tensors, called Log-Euclidean
(LE) [14].

In the following, we will make an extensive use of a few
functions on symmetric matrices, namely the matrix exponential/
logarithm. The exp and log are the ordinary matrix exponential/
logarithm operators. Not to be confused, expP and logP are
manifold specific operators, which are point dependent, PASþd .
The exponential/logarithm of general matrices can be defined
using series. In the case of symmetric matrices, we have some
important simplifications and these operators can be computed
easily [9]. Let P¼UDUT be the eigenvalue decomposition of a
symmetric matrix. These matrix operators are given by

expðPÞ ¼
X1
k ¼ 0

Pk

k!
¼U expðDÞUT

ð10Þ

logðPÞ ¼
X1
k ¼ 1

ð�1Þk�1

k
ðP�IÞk ¼U logðDÞUT

ð11Þ

where expðDÞ and logðDÞ are the diagonal matrices of the
eigenvalue exponential and logarithm, respectively.

Through the mapping j that associates to each PASþd its n

independent components skl (kr l-k, l¼ 1, . . . ,d), we see that Sþd
is isomorphic to Rn with n¼ 1

2dðdþ1Þ. Thus, we can consider Sþd as

an n-dimensional manifold where the coordinates x¼ ðx1, . . . ,xnÞ
T

will be the independent components of the matrix P and linearly

accessed through j, with xi ¼ si ¼ skl with ði¼ 1, . . . ,nÞ and

ðkr l-k,l¼ 1, . . . ,dÞ.

5.1. Euclidean metric (E)

Considering the standard Euclidean metric, the dissimilarity
measure DEðP,Q Þ between tensors P,Q ASþd is given by the
Frobenius norm of the difference [7]

DEðP,Q Þ ¼ 9P�Q 9F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trððP�Q ÞðP�Q ÞTÞ

q
ð12Þ

rPD2
EðP,Q Þ ¼ P�Q ð13Þ

where tr denotes the trace operator. The gradient of the squared
Euclidean distance rPD2

EðP,Q Þ can be proved to correspond to the
usual difference tangent vector. The empirical mean tensor TE over
a set of N tensors fTig is estimated as

TE ¼
1

N

XN

i ¼ 1

Ti ð14Þ
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5.2. Affine-invariant metric (AI)

Using the fact that the manifold of the multivariate normal
distributions with zero mean can be identified with the tensor
manifold Sþd , a Riemannian metric on Sþd can be deduced/
introduced in terms of the Fisher information matrix [68]. An
Affine-Invariant Riemannian metric [12,13] for the tensor space
Sþd , derived from the Fisher information matrix, is given 8PASþd
by the twice covariant tensor

gij ¼ gðEi,EjÞ ¼/Ei,EjSP ¼
1
2 trðP�1EiP

�1EjÞ ð15Þ

8i, j¼ ð1, . . . ,nÞ, where Ei is a d�d matrix. We denote by
f@igi ¼ 1,...,n ¼ fEigi ¼ 1,...,n the canonical basis of the tangent space
of the manifold Sþd (e.g. the space of vector fields). We equally
denote by fEn

i gi ¼ 1,...,n the dual basis of the cotangent space of Sþd
(e.g. the space of differential forms). The tangent space of Sþd
coincides with the space of d� d symmetric matrices Sd and the
basis is given by

Ei ¼ Ekl ¼
1kk, k¼ l

ð1klþ1lkÞ, ka l

(
ð16Þ

En

i ¼ En

kl ¼
1kk, k¼ l
1
2ð1klþ1lkÞ, ka l

(
ð17Þ

with ði¼ 1, . . . ,nÞ and ðkr l-k, l¼ 1, . . . ,dÞ, where 1kl stands for
the d�d matrix with 1 at row k and column l and 0 everywhere
else. Recalling that ð@1, . . . ,@nÞ define a basis of the tangent space
TPM, for any tangent vectors u,vASd, in tangent space TPM, their
inner product relative to point P is given by

/u,vSP ¼
1
2 trðP�1uP�1vÞ ð18Þ

Let g : ½0;1� �R-M be a curve in Sþd , with endpoints gð0Þ ¼ P
and gð1Þ ¼Q , 8P,Q ASþd . The geodesic defined by the initial point
gð0Þ ¼ P and the tangent vector _gð0Þ can be expressed [69] as

gðtÞ ¼ expP½t _gð0Þ� ¼ P1=2 exp½ðtÞP�1=2 _gð0ÞP�1=2
�P1=2

ð19Þ

which in the case of t¼1 correspond to the exponential map
expP : TPM-M with gð1Þ ¼ expPð _gð0ÞÞ. The respective logarithm
map logP :M-TPM is defined as

_gð0Þ ¼ logPðQ Þ ¼�P logðQ�1PÞ ð20Þ

Notice that these operators are point dependent where the
dependence is made explicit with the subscript. The geodesic
distance DAIðP,Q Þ between two points P,Q ASþd , induced by the
Affine-Invariant Riemannian metric, derived from the Fisher
information matrix was proved ([70, Theorem: S.T. Jensen]) to
be given as

DAIðP,Q Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 trðlog2

ðP�1=2QP�1=2
ÞÞ

q
ð21Þ

rPD2
AIðP,Q Þ ¼ P logðQ�1PÞ: ð22Þ

This metric exhibits all the properties necessary to be a true
metric such that, positivity, symmetry, triangle inequality and is
also affine invariant and invariant under inversion. The gradient
of the squared geodesic distance rPD2

AIðP,Q Þ, is equal to the
negative of the initial velocity _gð0Þ that define the geodesic [69,2].

Using this metric if N42, a closed-form expression for the
mean TAI of a set of N tensors fTigASþd cannot be obtained. The
mean is only implicitly defined based on the fact that the Rieman-
nian barycenter exists and is unique for nonpositive sectional
curvature manifolds, which is the case of the manifold Sþd . In the
literature [12,13,9], this problem is solved iteratively using a
gradient descent algorithm given by

T
tþ1

AI ¼ exp
T

t

AI

ðuÞ ð23Þ

u¼�
1

N

XN

i ¼ 1

r
T

t

AI

D2
AIðT

t

AI,TiÞ ¼�
1

N
T

t

AI

XN

i ¼ 1

logðT�1
i T

t

AIÞ ð24Þ

The algorithm is based on the minimization of the variance. This
boils down to evolving an initial guess of the mean along the
geodesics with a velocity given by the gradient of the variance
(tangent vector u).

5.3. Log-Euclidean metric (LE)

We now present the framework for the tensor space endowed
with the Log-Euclidean metric [14]. Contrary to the Affine-
Invariant, the Log-Euclidean metric induces a space with a null
curvature. By trying to put a Lie group structure on the tensor
space, Arsigny et al. [14] observed that the matrix exponential is a
diffeomorphism (a one-to-one, continuous, differentiable mapping
with a continuous, differentiable inverse) from the space of
symmetric matrices Sd to the tensor space Sþd .

The important point here is that the logarithm of a tensor
PASþd is unique, well defined and is a symmetric matrix
u¼ logðPÞ. Conversely, the matrix exponential of any symmetric
matrix u yields a tensor P¼ expðuÞ, i.e. each symmetric matrix is
associated to a tensor by the matrix exponential.

Thus, one can seamlessly transport all the operations defined
in the vector space of symmetric matrices Sd to the tensor space
Sþd , i.e. since there is a one-to-one mapping between the tensor
space and the vector space of symmetric matrices, one can
transfer to tensors the standard algebraic operations (addition
þ and scalar multiplication �) with the matrix exponential. This
defines on tensors the logarithmic multiplication � and the
logarithmic scalar multiplication ,, given by

P� Q ¼ exp½logðPÞþ logðQ Þ� ð25Þ

l,P¼ exp½l � logðPÞ� ¼ Pl
ð26Þ

The operator � is commutative and coincides with matrix multi-
plication whenever the two tensors P,Q ASþd commute in the
matrix sense. With � and , the tensor space Sþd has by
construction a commutative Lie Group Structure, i.e a space that
is both a smooth manifold and a group in which algebraic
operations (multiplication and inversion) are smooth mappings
and a Vector Space Structure, which is not the usual structure
directly inherited from square matrices. Here, the smoothness of
� comes from the fact that both the exponential and the
logarithm mappings are smooth.

The operator � gives a commutative Lie Group Structure to the
tensors, for which any metric at the tangent space at the identity

is extended into a bi-invariant Riemannian metric on the tensor
manifold (metrics that are invariant by multiplication and
inversion), e.g. the Euclidean metric on symmetric matrices is
transformed into a bi-invariant Riemannian metric on the tensor
manifold. Among Riemannian metrics in Lie groups, the most
suitable in practice, when they exist, are bi-invariant metrics.
These metrics are used in differential geometry to generalize to
Lie groups a notion of mean that is consistent with multiplication
and inversion. For our tensor Lie group, bi-invariant metrics exist
and are particularly simple. Their existence simply results from
the commutativity of logarithmic multiplication between tensors,
and since they correspond to Euclidean metrics in the domain of
logarithms they are called Log-Euclidean metrics.

By adding the operator ,, we get a complete structure of
vector space on tensors. This means that most of the operations
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that were generalized using minimizations for the Affine-Invar-
iant metric do have a closed-form with a Log-Euclidean metric.
Hence, the Riemannian framework for statistics is extremely
simplified. Results obtained on logarithms are mapped back to
the tensor domain with the exponential.

In the Log-Euclidean framework, the inner product /u,vSP for
any tangent vectors u,vASd, in the tangent space TPM, relative to
the point P is given by

/u,vSP ¼/@P log � u,@P log � vSId ð27Þ

The operator @P log� correspond to the differential of the matrix
logarithm. Let g : ½0;1� �R-M be a curve in Sþd , with gð0Þ ¼ P
and gð1Þ ¼Q , 8P,Q ASþd . The geodesic defined by the point
gð0Þ ¼ P and the tangent vector _gð0Þ can be expressed as

gðtÞ ¼ expP½t _gð0Þ� ¼ exp½logðPÞþ@P log � ½t _gð0Þ� ð28Þ

which in case of t¼1 correspond to the exponential map expP :

TPM-M with gð1Þ ¼ expPð _gð0ÞÞ. The respective logarithm map
logP :M-TPM is defined as

_gð0Þ ¼ logPðQ Þ ¼ @logðPÞ exp � ½logðQ Þ�logðPÞ� ð29Þ

where @P exp� correspond to the differential of the matrix expo-
nential. Since the Log-Euclidean metrics correspond to Euclidean
metrics in the logarithms domain, the shortest path between the
tensors P and Q is a straight line in that domain. Hence, the
interpolation between tensors is simplified, and is expressed as

gðtÞ ¼ exp½ð1�tÞ logðPÞþt logðQ Þ� ð30Þ

The geodesic distance DLEðP,Q Þ between the points P,Q ASþd ,
induced by this metric is also extremely simplified as follows:

DLEðP,Q Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½ðlogðQ Þ�logðPÞÞ2�

q
ð31Þ

As one can see, the Log-Euclidean distance is much simpler than
the equivalent Affine-Invariant distance where matrix multiplica-
tions, square roots, and inverses are used. The greater simplicity
of Log-Euclidean metrics can also be seen from the mean in the
tensor space. In this case, the mean of a set of N tensors fTigASþd
is a direct generalization of the geometric mean of positive
numbers and is given explicitly by

TLE ¼ exp
1

N

XN

i ¼ 1

logðTiÞ ð32Þ

This closed form equation makes the computation of Log-Eucli-
dean means straightforward. Practically, one simply use the usual
tools of Euclidean statistics on the logarithms and map the results
back to the tensor vector space with the exponential. This is
theoretically fully justified because the tensor Lie group endowed
with a bi-invariant metric (i.e. here a Log-Euclidean metric) is
isomorphic, diffeomorphic and isometric to the additive group of
symmetric matrices [14]. In terms of elementary operations like
distance, geodesics and means, the Log-Euclidean provides much
simpler formulae than in the Affine-Invariant case. However, we
see that the exponential/logarithm mappings are complicated in
the Log-Euclidean case by the use of the differentials of the matrix
exponential/logarithm. For general matrices, one has to compute
the series

@P exp � ðuÞ ¼
Xþ1
k ¼ 1

1

k!

Xk�1

i ¼ 0

uiPuðk�i�1Þ

" #
ð33Þ

This cost would probably be prohibitive if we had to rely on
numerical approximation methods. However, in the case of
symmetric matrices, the differential is simplified. Using spectral
properties of symmetric matrices, one can compute an explicit
and very simple/efficiently closed-form expression for the differ-
ential of both matrix logarithm and exponential (see [8]). Let
u¼ RDRT , where D is a diagonal matrix, and consider Z¼RPRT . As
D is diagonal, one can access the ðl,mÞ coefficient of the resulting
matrix as

@P exp � ðuÞ ¼RT@Z exp � ðDÞR ð34Þ

½@Z exp � ðDÞ�ðl,mÞ ¼
expðdlÞ�expðdmÞ

dl�dm
½Z�ðl,mÞ ð35Þ

6. Background modeling: non-parametric

In this section, we present a proper derivation of the KDE on
general Riemannian manifolds, mathematically defined by Pelle-
tier [17] and we extend this concept to the tensor manifold (Sþd ).
The tensor manifold is endowed with two Riemannian metrics,
i.e. Affine-Invariant and Log-Euclidean, and with the standard
Euclidean metric to prove the benefits of take into account the
Riemannian structure of the manifold.

The kernel density estimator is the most widely used practical
method for nonparametrically estimate the underlying density of
a random sample on Rn. By placing a smooth kernel, the resulting
estimator will have a smooth density estimate. Sample spaces
with a more complex intrinsic structure than the Euclidean space
(e.g. Riemannian structure) arise in a variety of contexts and
motivate the adaptation of popular nonparametric estimation
techniques on Rn. However, applying a nonparametric approach
outside Euclidean spaces is not trivial and requires careful use of
the differential geometry.

One question arise: How to choose the metric depending on
the nature and natural properties of the data that need to
process? Following Pennec’s research on medical imaging proces-
sing [71], the Affine-Invariant and Log-Euclidean metrics seem to
be well adapted for DTIs and covariance matrices, providing
powerful tools to process tensors (e.g. normal law, mean, inter-
polation, filtering, smoothing). Null and negatives eigenvalues are
at an infinite distance of any tensor, so there is no risk to reach
them in a finite time and gradient descents algorithms are well
posed. The Affine-Invariant metrics gives to the tensor manifold a
Hadamard structure (a space with non-positive curvature which
is diffeomorphic to Rn) while the Log-Euclidean ones give a
complete Euclidean structure. With both metrics, the mean
always exists and is unique. The characteristic swelling effect
problem [71,14], observed when the tensor manifold is endowed
with the standard Euclidean metric, disappears using both Rie-
mannian metrics. Thus, it seems that both Riemannian metrics fit
into the same problems.

However, Arsigny [14] showed that in the DTI processing,
applying the standard tools to process tensors (e.g. mean, inter-
polation, filtering, smoothing) using the Log-Euclidean metric,
gives as output tensors more anisotropic that their Affine-Invar-
iant counterparts. On the other hand, Arsigny [14] also showed
that from a numerical point of view the computation of those
tools using the Log-Euclidean is not only faster but also more
stable than in the Affine-Invariant case. This property can be
crucial in applications where large amounts of data are processed.

Over the years, the researchers showed that there is not an
universal metric for one type of features (tensors): there are
different families of metrics with similar or different character-
istics, and one may rely on one or the other depending on the
specificities of the application [71,14].

6.1. Non-parametric: intrinsic

Frequentist methods for nonparametric estimation on non-
Euclidean spaces have been developed by Pelletier [17]. In [17], an
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appropriate kernel method is presented on general Riemannian
manifolds, which generalize the commonly used location-scale
kernel on Euclidean spaces. Pelletier’s idea was to build an
analogue of a kernel on M by using a positive function of the
geodesic distance on M, which is then normalized by the volume

density function to take into account the curvature. Pelletier’s
estimator is consistent with standard kernel estimators on Eucli-
dean spaces Rn. It converges at the same rate as the Euclidean
kernel estimator. Provided the bandwidth is small enough, the
kernel is centered on the observation, i.e. the observation is an
intrinsic mean of its associated kernel.

Consider a probability distribution with a density f on a
Riemannian manifold ðM,gÞ and let fZ1, . . . ,ZNg be N i.i.d. random
objects onM with density f. The density estimator of f is defined
as the map f N,K M0003A;M-Rþ which, to each ZAM, associates
the value f N,K ðZÞ given by

f N,K ðZÞ ¼
1

N

XN

i ¼ 1

1

yZi
ðZÞ

1

hn K
DðZ,ZiÞ

h

� �
ð36Þ

where DðZ,ZiÞ is the geodesic distance between points Z,ZiAM,
yZi
ðZÞ is the volume density function, (n) is the manifold dimen-

sion, (h) is the bandwidth or smoothing parameter, (N) is the
number of samples and Kð�Þ is a nonnegative function (we define
Kð�Þ as the Normal pdf).

In a Euclidean space, the integral of the kernel is independent
of the point at which it is centered and the density function
integrates to one. For a Riemannian manifold, the integral depends
on the point at which the kernel it is centered, e.g. depends on the
local geometry ofM in a neighborhood of the observation. This is
necessary for obtaining an estimator which is consistent with
kernel estimators on Euclidean space, and which possesses the
same properties under a similar bunch of assumptions.

It is possible to ensure that the integral is the same irrespec-
tive of where it is centered by using the volume density function,
i.e. measuring how much n-dimensional volumes in regions of an
n-dimensional Riemannian manifold differ from the volumes of
equivalent regions in Rn.

For P,Q AM, the volume density function yPðQ Þ on M is
defined by ([72, p. 174])

yP : Q-yPðQ Þ ¼
mexpn

P
g

mgP

ðexp�1
P Q Þ ð37Þ

which is the quotient of the canonical measure of the Riemannian
metric expn

Pg on TPM (pullback of the metric-tensor g by the
exponential-map expP) by the Lebesgue measure of the Euclidean
structure gP on TPM. In other words, if Q belongs to a normal
neighborhood of P, then yPðQ Þ is the density of the pullback of the
volume measure on M to TPM with respect to the Lebesgue
measure on TPM via the inverse exponential-map exp�1

P .

In terms of geodesic normal coordinates at P, yPðQ Þ equals the
square-root of the determinant of the metric-tensor g expressed in

these coordinates at exp�1
P Q . Let GP ¼ ½gij�P be the local represen-

tation of the Riemannian metric (Section 4), if y¼jðQ Þ ¼
ðy1, . . . ,ynÞ

T denotes the normal coordinates of Q in a normal

coordinate system centered at P then yPðQ Þ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9GPðyÞ9

q
Þ. In a

normal neighborhood, y is strictly positive and yPðQ Þ ¼ yQ ðPÞ

[73,17].
6.1.1. Intrinsic: Euclidean metric

The distance DEðP,Q Þ between tensors 8P,Q ASþd , induced by
the Euclidean metric is given by Eq. (12).

Square-root determinant metric ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9GPðyÞ9

q
Þ: As mentioned pre-

viously, Pelletier’s estimator is consistent with kernel estimators
on Euclidean spaces, i.e. when M is the Euclidean space Rn, the
estimator expression reduces to the one of a standard kernel

estimator on Rn [17]. Consider that ðM,gÞ corresponds to the

Euclidean space ðRn,dÞ, where d denotes the usual canonical
Euclidean metric, and consider the canonical identification of

the tangent space TPM at some point P of ðRn,dÞ, with Rn. Note
that any two tangent spaces at different points on the manifold
are also canonically identified. This defines trivially a normal
chart, the domain of which is the entire manifold. In this chart,
the components of the metric tensor form the identity matrix,

hence 8P,Q AM the calculus of the yPðQ Þ is simplified toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9GPðyÞ9

q
¼ 1 (when the space is flat the volume density function

is unity everywhere [72, p. 154]).

6.1.2. Intrinsic: Affine-Invariant metric

The geodesic distance DAIðP,Q Þ between two tensors
8P,Q ASþd , induced by the Affine-Invariant Riemannian metric,
derived from the Fisher information matrix, is given by Eq. (21).

Square-root determinant metric ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9GPðyÞ9

q
Þ: Generalizing the pdf

concept requires a measure dM on the manifold which, in case of
Riemannian manifolds, is induced in a natural way by the metric
G(x) for a given local coordinate system [74]. As any metric in an
Euclidean space, the Riemannian metric induces an infinitesimal

volume element dMðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9GðxÞ9

q
dx in any chart (volume of the

parallelepiped spanned by the vectors of an orthonormal basis of
the tangent space). The difference is that the measure is now
different at each point since the local expression of the metric is

changing. The reference measure dMðxÞ on the manifold can be
used to measure random events on the manifold (generalization of
random variables), and to define their pdf (if it exists), i.e. the
function p(x) on the manifold such that the respective probability

measure is given by dPðxÞ ¼ pðxÞdMðxÞ. The induced measure dM
actually represents the notion of uniformity according to the
chosen Riemannian metric. With the probability measure dP of

a random element, we can integrate functions fðxÞ from the
manifold to any vector space, thus defining the expected value of
this function. This notion of expectation corresponds to the one
we defined on real random variables and vectors. Seeing that the
Taylor expansion of the metric was defined in [75], Pennec [74]

used the Taylor expansion of the measure dM [76] in a normal
coordinate system around the mean value to generalized a
Normal law to Riemannian manifolds. In our case, we consider
the normal coordinate system around PAM. The Taylor expan-

sion of the measure dM around the origin is given as

dMPðyÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9GPðyÞ9

q
Þ dy	 1�

yTRy

6

� �
dy ð38Þ

where y is the normal coordinates of Q AM and R is the Ricci
tensor in the considered normal coordinate system. The expres-
sion for the volume density function given by Eq. (37) was
deduced in ([77, p. 169]), which is equal to the expression showed

in Eq. (38). To define the Ricci tensor for the tensor space Sþd , we

have to choose an affine connection, since this will influence the
curvature properties. The existence/uniqueness of the Rieman-
nian barycenter requires that the space exhibit a non-positive
sectional curvature.

The canonical affine connection on a Riemannian manifold is
known as the Levi-Civita connection (or covariant derivative). It is
the only one to be compatible with the metric (covariant deriva-
tive of the metric is zero), i.e. the only one by which the parallel
transport of a vector does not affect its length. Therefore, we will
work with the Levi-Civita connection in the remaining develop-
ments. Using the local coordinates, the Christoffel symbols of the
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second kind [12] for the tensor space Sþd can also be expressed in
terms of the elements of the canonical and dual basis fEigi ¼ 1,...,n

and fEn

i gi ¼ 1,...,n

Gk
ij ¼GðEi,Ej; E

n

kÞ ¼ En

k � ðr
F
Ei

EjÞ ð39Þ

8i,j,k¼ 1, . . . ,n. Provided that [12] (PASþd ):

@gðEi,EjÞ

@xk
¼�

1

2
trðP�1EkP�1EiP

�1EjÞ

�
1

2
trðP�1EiP

�1EkP�1EjÞ ð40Þ

the unique affine connection (Levi-Civita) associated with the
Fisher information metric was derived from Eq. (7) as

GðEi,Ej;E
n

kÞ ¼�
1
2 trðEiP

�1EjE
n

kÞ�
1
2 trðEjP

�1EiE
n

kÞ ð41Þ

Riemannian curvature tensor ðRÞ: As shown in [12], the
Riemann curvature tensor ðRÞ for the tensor space Sþd , derived
from the Fisher information metric, and the classical Levi-Civita
affine connection, is given by

Rijkl ¼RðEi,Ej,Ek,ElÞ

¼ 1
4 trðEjP

�1EiP
�1EkP�1ElP

�1
Þ

�1
4 trðEiP

�1EjP
�1EkP�1ElP

�1
Þ ð42Þ

Ricci curvature tensor ðRÞ: The Ricci tensor ðRÞ calculus is
performed on the basis of closed-form expressions for the metric
and the Riemann tensor R (Eq. (9)) and simply involves traces of
matrix products. Symbolic computations easily lead to the com-
ponents of the Ricci in terms of the components of P�1. Compar-
ing the Ricci ðRÞwith the metric, we confirm that the tensor space
endowed with this metric is not an Einstein manifold [10,12] i.e. it
is a space of non-constant non-positive curvature, for which there
does not exist a constant L such that Rij ¼ Lgij. Therefore, we need
take into account the Riemannian tensor ðRÞ to deal with the
curvature.

6.1.3. Intrinsic: Log-Euclidean metric

The geodesic distance DLEðP,Q Þ between tensors 8P,Q ASþd ,
induced by the Log-Euclidean metric, is given by Eq. (31).

Square-root determinant metric ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9GPðyÞ9

q
Þ: It was proved in

[14] that the Lie group of the Sþd matrices is isomorphic (algebraic

structure of vector space is conserved) and diffeomorphic to the
additive group of symmetric matrices Sd. It was also proved that

the Lie group of Sþd matrices endowed with a Log-Euclidean

metric is also isometric (distances are conserved) to the space of
symmetric matrices Sd endowed with the associated Euclidean

metric. The Log-Euclidean metric induces on the tensor space Sþd
a space with a null curvature, i.e. endowed with the Log-

Euclidean metric, the tensor space Sþd is a flat Riemannian space

(its sectional curvature (see [76, p. 107]) is null everywhere).
As proved in ([72, p. 154]), when the Riemannian space is flat the
volume density function is unity everywhere. Analyzing the
problem from a different perspective, consider that the volume
density function is equal to the square-root of the determinant of
the metric-tensor (Section 6.1). The underlying isometry of the
Log-Euclidean metric result in a metric tensor that is in fact a
orthogonal matrix and hence the determinant of the metric tensor
is always equal to one [63]. Taking into account these facts,

the calculus 8P,Q ASþd of the volume density function yPðQ Þ is

extremely simplified to ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9GPðyÞ9

q
Þ ¼ 1.

6.2. Non-parametric: extrinsic

The KDE was intrinsically formulated in Section 6.1 to operate
on the tensor manifold Sþd . Depending on the metric chosen, that
approach specifically requires the computation of the volume
density function, which can be hard to carry out for some
applications. Therefore, it would be interesting to extrinsically

reformulate the KDE on the tensor manifold and evaluate its
performance and efficiency.

In this section, we will analyze the feasibility of designing an
extrinsic KDE to operate on the tensor manifold Sþd endowed with
the two Riemannian metrics (i.e. Affine-Invariant and Log-Euclidean).
The extension is extrinsic in the sense that the inherent density
estimation is performed on the tangent spaces. By first mapping the
data to a tangent space, that is a vector space, we can use a standard
Euclidean KDE approach [15,16]. We start by defining mappings from
neighborhoods on the manifold to the Euclidean space, similar to
coordinate charts. Our maps are the logarithm maps logP that map
the neighborhood of points PAM to the tangent space TPM. Since
this mapping is a homeomorphism around the neighborhood of the
point, the manifold structure is locally preserved. This requires
choosing a suitable tangent space on which to map. In this work,
the data was mapped onto the tangent space at the mean point of the
samples data. Since the Karcher mean mAM of a set of points on the
Riemannian manifold is the point on M that minimizes the sum of
squared Riemannian distances [9], and the mapping preserves the
structure of the manifold locally, the tangent plane at the mean m is a
good choice. This procedure can be seen as a way of linearizing the
manifold around the mean point m since the tangent space TmM
provides a first order approximation of the manifold around m.
Basically, this is the same as consider a normal coordinate system
ðU ,jÞ around the mean point m.

At some time t, let fZigi ¼ 1,...,N be the set of N points onM (past
samples or observations) and Z0AM is the actual sample that we
want to classify. First, we compute the mean mt AM of the all
samples fZigi ¼ 0,...,N . Then, we map (project) all the points
fZigi ¼ 0,...,N to the tangent space Tmt

M using the logarithm map
logmt
ðZiÞ, i¼ 0, . . . ,N. Let zi ¼jðZiÞ ¼ ðz

1
i , . . . ,zn

i Þ
T denote the normal

coordinates of Zi, 8i¼ 0, . . . ,N in the normal coordinate system at
mt . Seeing that the normal coordinate system defines a vector
space, we can apply the standard Euclidean KDE on Rn [15,16].
6.2.1. Extrinsic: Affine-Invariant metric

As had been pointed out in Section 5.2, by using the Affine-
Invariant metric a closed-form expression for the mean on the tensor
manifold (Sþd ) cannot be obtained. The mean is only implicitly defined
since the Riemannian barycenter exists and is unique for nonpositive
sectional curvature manifolds. The gradient descent algorithm pre-
sented in Section 5.2 essentially alternates the computation of the
barycenter in the exponential chart centered at the current estimation
of the mean value, and performs a re-centering step of the chart at
the point of the manifold that corresponds to the computed bar-
ycenter (geodesic marching step). An exact implementation of this
iterative algorithm can be a costly procedure.

In order to speed up the process, we will use a method based on a
online K-means on the tensor manifold (endowed with the Affine-
Invariant metric) proposed by Caseiro et al. [11]. At each frame
(time t), the mean value mt ASþd is updated using a learning rate (r).
The new mean mt combine the prior information mt�1ASþd with the
actual sample Z0ASþd . To take into account the Riemannian geome-
try of the manifold Sþd , Caseiro et al. [11] derived an approximation
equation to update the tensor mean, based on the concept of
interpolation between tensors. The interpolation can be seen as a
walk along the geodesic joining the tensors. After some mathematical
simplifications [11] the mean update equation turns into

mt ¼ ðmt�1Þ
ð1�rÞ=2

ðZ0Þ
r
ðmt�1Þ

ð1�rÞ=2
ð43Þ

It is clear that this KDE extrinsic formulation is much simpler than the
intrinsic counterpart, mainly due to two reasons. Firstly (at each time
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t), it is not necessary to compute the Ricci curvature tensor R.
Secondly (at each time t), the N distances between tensors are
computed in the Euclidean space provided by the tangent space
Tmt
M, i.e. it is not necessary to use the geodesic distance given by

Eq. (21).

6.2.2. Extrinsic: Log-Euclidean metric

The tensor manifold Sþd endowed with the Log-Euclidean
metric is a special case that imposes a more in-depth analysis,
i.e. due to the special properties of the Log-Euclidean metric there
are two different paradigms that we need to analyze in order to
design an extrinsic KDE on the tensor manifold. Basically, we need
to define a mapping in order to project the data from the manifold
to an Euclidean space. In the case of the Log-Euclidean metric, we
have two different ways to project the data to an Euclidean space.
(1)
 We can use the logarithm map logm given by Eq. (29) to project
the data to the tangent space at the mean point Tmt

M. Recall
that although the logarithm map in the Log-Euclidean case
seems complicated by the use of the differential of the expo-
nential matrix, we can compute this differential explicitly in a
very simple and closed-form fashion using the Eq. (23).
As in the Affine-Invariant case, the mean point at each time mt

can be calculated by two different approaches: the first, is to use
the Eq. (32) at each time t to compute the mean mt AM of the all
samples fZigi ¼ 0,...,N (actual and past samples).

Recall that the Log-Euclidean metric provides a closed-form
solution (Eq. (32)) to compute the mean of a set of samples which
is much simpler than the equivalent Affine-Invariant (Eq. (34));
the second, is to use an approach similar to the K-means used in
Section 6.2.1 to compute the mean at time t, in a online fashion. In
the Log-Euclidean case, we do not use Eq. (43) to combine the
prior information mt�1ASþd with the actual sample Z0ASþd , but
instead we can use the interpolation equation given by Eq. (30).

Although this extrinsic approach provides a good approxima-
tion and is conceptually similar to the extrinsic Affine-Invariant
counterpart, in practice, if we analyze and compare this extrinsic
algorithm with the intrinsic version (Section 6.1.3) we conclude
that the extrinsic is much more complex and naturally is much
more time consuming.

By inducing a space with a null curvature, the Log-Euclidean
metric considerably simplifies the volume density function com-
putation, meaning that this extrinsic version does not provide any
benefits over the intrinsic counterpart.
(2)
 The Log-Euclidean framework defines a mapping where the
tensor space Sþd is isomorphic, diffeomorphic, and isometric to
the associated Euclidean space of symmetric matrices Sd. This
mapping is precisely the simple matrix logarithm (logI P¼ log P),
8PASþd , i.e. tensors are transformed into symmetric matrices
using log P (I is a identity d� d matrix). Since the Log-Euclidean
transforms Riemannian computations on tensors into Euclidean
computations on vectors in the logarithms domain, practically
one simply uses the usual tools of Euclidean statistics on the
logarithms and maps the results back to the tensor vector space
with the exponential. Notice that in practice this extrinsic version
in which the mapping is defined by the simple matrix logarithm
log is mathematically equivalent to the intrinsic counterpart
(Section 6.1.3).
7. Experimental results

In order to evaluate and confirm the effectiveness of the
proposed non-parametric framework on tensor field for foreground
segmentation, we conduct a considerable number of experiments on
a variety of challenging video sequences presented in the previous
literature, which include both indoor and outdoor environments
with complex backgrounds (e.g. dynamic backgrounds, illumination
changes, camera jitters and image noise).

We now present a brief description of each one of the eight
sequences used. The sequence 1 (HighWayI) is a highway scenario
where the vast majority of car colors are shades of gray (similar to
the background). The sequence 2 (Railway) is the moving camera
sequence used by Caseiro et al. [2], which involved a camera
mounted on a tall tripod. The wind caused the tripod to sway back
and forth causing nominal motion of the camera. The sequence 3
(HighWayIII) is a highway scenario where there is typically a
steady stream of vehicles. The sequence 4 (HalwayI) shows a busy
hallway where people are walking or standing still. The sequence
5 (Campus) is a noisy sequence from outdoor campus site where
cars approach to an entrance barrier and students are walking
around. The sequence 6 (HighWayII) is a highway scenario where
the camera presents some motion and the image is noisy. The
sequence 7 (Ducks) is from an outdoor scene that contains two
ducks swimming on a pond, with dynamic background composed
of subtle illumination variations along with ripples in the water
and swaying trees in the upper part of the scene. The sequence 8
(Fountain) is a particularly challenging outdoor situation, with
several sources of dynamic motion, e.g. a spouting fountain with
nonperiodic motions and the swaying tree branches above.

The sequences 1, 5, 6 are selected from the ATON project
(http://cvrr.ucsd.edu/aton/shadow) or VISOR repository (http://
www.openvisor.org/) [78]. The sequence 2, 7, 8 are selected
from Seikh’s work [38] (http://www.cs.cmu.edu/
yaser/). The
sequences 3 and 4 are selected from Brisson’s work [79] (http://
cvrr.ucsd.edu/aton/shadow/). We will perform several experi-
ments using the mentioned sequences in order to compare our
non-parametric framework on tensor domain with the appropri-
ate state of the art methods. The main goals of these experiments
are as follows:

Goal 1 proves the benefits of the tensor-based methods
compared with the standard feature vectorial approaches. The
tensor-based methods enable the conversion of the image into a
more information rich form (to yield latent discriminating
features, e.g. color, gradients, filters responses, etc.) and the
integration of spatial texture, considering the correlation between
pixels (pixel based and region based information embedded by
tensor matrices). We will show that the effective modeling of the
spatial correlations of neighbors pixels by the use of these suitable
tensor-based descriptors results in a high discriminative power.

Goal 2 demonstrates the advantage of take into account the
underlying geometric structure of the tensor manifold. The tensor
space is a Riemannian manifold, meaning that the space of
tensors do not conform to Euclidean geometry, therefore the
standard Euclidean metric is not appropriate in order to exploit all
the information presented in the tensor components. We claim
and intend to demonstrate that the use of the well-founded
differential geometrical properties of the tensor manifold has a
deep impact on the tensor statistics and, hence, it is possible to
improve dramatically the quality of the segmentation results.

Goal 3 proves the benefits of the proposed non-parametric
technique on the tensor domain in more complex scenarios where
simple parametric models do not accurately explain the physical
processes, i.e. the nonparametric nature of complex, time varying
and non-static backgrounds cannot be well modeled by a single or
a combination of parametric distributions.

Goal 4 demonstrates that new points of view on the tensor
space can lead to significantly simpler computations and there-
fore faster foreground detection algorithms (as proved previously
by Caseiro et al. in [2] for the tensor-based GMM paradigm). Prove

http://cvrr.ucsd.edu/aton/shadow
http://www.openvisor.org/
http://www.openvisor.org/
http://www.cs.cmu.edu/~yaser/
http://www.cs.cmu.edu/~yaser/
http://cvrr.ucsd.edu/aton/shadow/
http://cvrr.ucsd.edu/aton/shadow/
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that from a practical point of view the two Riemannian metrics
proposed to endow the tensor manifold (Affine-Invariant and
Log-Euclidean) yield similar segmentation results despite of the
Log-Euclidean metric be much more simple and faster.

Goal 5 demonstrates that the extrinsic reformulation of the
KDE on the tensor manifold can be a good option to speed up the
density estimation process, particularly in the case when the
manifold is endowed with the Affine-Invariant metric, while some
of the benefits of the nonparametric estimation are preserved.

The parametric approach proposed by Stauffer [18] (GMM)
and the non-parametric counterpart presented by Elgammal
[15,16] (KDE) are the two most widely used techniques to fore-
ground detection using vectorial space features. Therefore, we
will use these two vectorial methods as baseline to prove the
benefits of the tensor-based approaches (goal 1), using two types
of features sets, i.e. a set with color data [r, g, b] and a set with
gray level incremented with gradients [I, Ix, Iy]). To the best of
our knowledge, Caseiro et al. [2,11] were the only ones to use the
paradigm of background modeling on tensor field to foreground
segmentation. Therefore, in order to accomplish the goal 3 we will
compare our non-parametric framework on the tensor domain
(KDE[T]) with the parametric counterpart (GMM[T]) proposed in
[2,11]. In order to prove the benefits of take into account the
Riemannian structure of the tensor manifold (goal 2) and to
demonstrate that from a practical point of view, the Log-Eucli-
dean metric is the best choice to endow the tensor manifold (goal
4), both the GMM[T] and KDE[T] frameworks will be tested using
the two proposed Riemannian metrics, (i.e. Affine-Invariant (AI)
and Log-Euclidean (LE)) and the standard Euclidean metric (E).
We also compared the intrinsic tensor-based KDE (KDE-Int[T])
with the extrinsic counterpart (KDE-Ext[T])—(goal 5). In this case,
we only compared the intrinsic with the extrinsic KDE when the
tensor manifold is endowed with the Affine-Invariant metric
because, as we concluded in Section 6.2.2 the extrinsic KDE in
the Log-Euclidean case does not provide any benefits over the
intrinsic counterpart.
Fig. 2. Experiment 1 / Quantitative performance evaluation on the sequences (1–6

positive ratio (FPR) / (E, Euclidean; AI, Affine-Invariant; LE, Log-Euclidean; Int, Intrin

Table 1.
In this evaluation, we use a tensor in which are encoded the
gray level information [I] and texture [Ix, Iy] features (gradients).
This results in a tensor with d¼3 and TASþ3 , i.e. the tensor
manifold is 6-dimensional (n ¼ 6) The structure tensor (ST) and
the region covariance matrix (RCM) are not specific descriptors,
but a scheme for designing descriptors, therefore the advantage of
the nonparametric paradigm over the parametric counterpart
remains independent of the information included in the tensor,
i.e. the proof of concept does not change. It is important to remark
that the tensor-based experiments presented in this section
(KDE[T] and GMM[T]) use the same tensor components. The
experiments are divided in two parts. In the first part (Experiment
1— Section 7.1), the sequences (1–6) are used to evaluate the
foreground segmentation performance of the proposed non-
parametric framework using the structure tensor (ST) as feature
(see Figs. 2–4 and Tables 1 and 2). In the second part (Experiment
2— Section 7.2), the last four sequences (5–8) are used to evaluate
the proposed non-parametric framework using the region covar-
iance matrix (RCM) as feature (see Figs. 5 and 6 and Tables 4–6).
The structure tensor and the region covariance matrices are both
calculated for each image pixel using a patch with dimension 3�
3 (w ¼ 3 and S ¼ 9). In order to establish the superiority of the
tensor observation model, the vectors [r, g, b] and [I, Ix, Iy]) were
generated by integrating over the same regions (patches) used to
compute the tensors, as in Eq. (3).

In order to compare the GMM and KDE algorithms, we followed
the standard procedures considered in the literature for conduct
experimental validations in the vectorial case, namely we followed
Elgammal’s work [15]. A summary of the significant parameters
values used in the experiments is shown in Tables 3 and 7. The
GMM algorithm [18] is controlled by four main parameters:
maximum number of Gaussian distributions allowed for each
pixel (M), number of Gaussian distributions effectively used for
each pixel (K), learning rate (a) and threshold (Tg). The KDE
algorithm [15] is controlled by five main parameters: type of
model (long or short term), number of samples (N), size of the
), using the structure tensor (ST), in terms of: true positive ratio (TPR) and false

sic; Ext, Extrinsic). Notice that this figure contains the same information that in



Fig. 3. Experiment 1 / Quantitative evaluation on the sequence 2, using the structure tensor (ST), in terms of: true positive ratio (TPR) and false positive ratio (FPR) /

(AI, Affine-Invariant; Int, Intrinsic). Notice that, in the sequence 2 (total¼500 frames), the scene is empty (without foreground objects) for the first 276 frames

(this sequence is the only one that has groundtruth available for all the frames).

Fig. 4. Experiment 1 / Examples of segmentation results on the sequences (1–6), using the structure tensor (ST) as feature.
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Table 1
Experiment 1 / Quantitative performance evaluation on the sequences (1–6), using the structure tensor (ST) as feature, in terms of true positive ratio (TPR) and false

positive ratio (FPR) / (E, Euclidean; AI, Affine-Invariant; LE, Log-Euclidean; Int, Intrinsic; Ext, Extrinsic).

Methods 1-HighWayI 2-Railway 3-HighWayIII 4-HalwayI 5-Campus 6-HighWayII AVERAGE

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

GMM[r, g, b] 52.10 20.25 55.23 23.10 55.40 24.95 50.10 25.30 48.50 34.48 50.63 37.14 51.99 27.54

GMM[I, Ix, Iy] 58.05 17.58 60.45 20.80 61.05 22.35 55.05 21.90 54.30 31.05 55.12 34.03 57.34 24.62

KDE[r, g, b] 59.83 16.85 62.70 19.95 63.15 22.00 57.45 21.40 55.60 30.13 58.25 32.58 59.50 23.82

KDE[I, Ix, Iy] 65.95 15.10 68.55 16.90 69.03 20.85 64.73 18.85 60.10 27.65 63.90 28.10 65.38 21.24

GMM[ST]-E 68.02 14.00 72.90 14.20 70.24 17.05 67.95 15.18 64.21 24.59 65.04 25.04 68.06 18.34

GMM[ST]-AI 83.90 07.95 83.25 07.38 81.70 09.35 82.27 10.25 74.94 14.01 73.81 15.20 79.48 10.69

GMM[ST]-LE 83.00 08.21 82.10 07.92 80.96 09.94 82.93 10.96 72.82 14.93 73.02 15.86 78.64 11.30

KDE-Int[ST]-E 74.10 10.36 76.30 10.65 74.35 10.46 73.05 11.03 69.04 15.08 70.13 18.83 72.83 12.74

KDE-Int[ST]-AI 96.25 01.02 94.35 01.74 95.65 00.95 95.78 01.12 87.90 05.52 87.25 07.95 93.36 03.05
KDE-Int[ST]-LE 95.64 01.17 94.23 01.96 94.75 01.08 95.53 01.95 87.14 05.71 86.97 07.13 92.88 03.17
KDE-Ext[ST]-AI 90.05 04.10 89.45 04.51 89.95 05.01 90.03 05.93 81.42 10.76 79.53 12.07 86.74 07.06

KDE-Ext[ST]-LE 95.64 01.17 94.23 01.96 94.75 01.08 95.53 01.95 87.14 05.71 86.97 07.13 92.38 03.17

Table 2
Experiment 1 / Comparative performance evaluation between the algorithms, on the sequences (1–6), using the structure tensor (ST). The differential values (D) were

calculated using the information presented in the column AVERAGE of the Table 1 as (D¼Methods A�Methods B). Notice that (DTPR-þÞ¼Good and (DFPR-�Þ¼Good.

D¼ A�B

Methods B Methods S

GMM[ST]-AI GMM[ST]-LE KDE-Int[ST]-AI KDE-Int[ST]-LE KDE-Ext[ST]-AI

DTPR DFPR DTPR DFPR DTPR DFPR DTPR DFPR DTPR DFPR

GMM[I, Ix, Iy] þ22.14 �13.93 – – – – – – – –

KDE[I, Ix, Iy] – – – – þ27.99 �18.20 – – – –

GMM[ST]-E þ11.92 �07.65 – – – – – – – –

GMM[ST]-AI – – �00.84 þ00.61 þ13.89 �07.65 – – þ06.76 �03.63

GMM[ST]-LE – – – – – – þ14.24 �08.14 – –

KDE-Int[ST]-E – – – – þ20.04 �09.69 – – – –

KDE-Int[ST]-AI – – – – – – �00.49 þ00.12 -06.13 þ04.01
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sampling window (W), threshold (Tk) and bandwidth (h). We
remark that, although we define in the GMM case, a relatively high
value for (M), almost no pixel reach that maximum at any point of
time during the experiments. Please refer to [18,15] for more
details about these parameters. For each video sequence, the same
parameters were used across all the vectorial and tensor-based
GMM/KDE algorithms. We highlight the fact that we compared
results using a set of parameters for the KDE paradigm without
perform a over tuning of them, against the best parameters found
for the GMM technique. This allows us to prove without any
doubts the benefits of the tensor-based KDE paradigm over the
GMM counterpart.

Note that, in the KDE algorithm [15], given a new pixel sample,
there are two alternative mechanisms to update the background
(the sample set). Selective update: add the new sample to the
model (sample set) only if it is classified as a background sample.
Blind update: just add the new sample to the model (sample set),
irrespective of whether it belongs to background or foreground.
In both cases, when a new sample is added, the oldest sample is
removed from the sample set to ensure that the probability
density estimation is based on recent samples. There are tradeoffs
to both of these mechanisms and to avoid them two models
(short term model and long term model) were proposed and a
combination of both was used in [15]. Short term model: This is
the very recent model of the scene. It adapts to changes quickly to
allow very sensitive detection. This model consists of the most
recent N background sample values. The sample set is updated
using selective update mechanism. Long term model: This model
captures a more stable representation of the scene background
and adapts to changes slowly. It consists of N sample points taken
from a larger window in time (with W samples). The sample is
updated using a blind-update mechanism.

We did not provide a step-by-step algorithm. But we recall
that the idea is to generalize the nonparametric background
model proposed by Elgammal [15], from pixel domain to tensor
domain. Therefore, using the KDE derivations for the tensor
manifold, the algorithm to foreground detection is basically
similar to [15]. However, for a fair comparison between the
GMM and the KDE paradigms, we did not implement some of
the algorithm’s stages described by Elgammal in [15]. The frame-
work proposed by Elgammal [15] combine short-term and long-
term models to achieve more robust detection results. In our
work, we only used one type of model in each video sequence
tested. The second stage of Elgammal’s framework aims to
suppress false detections that are due to small and unmodeled
movements in the scene background. Taking into account that
step is considered as a postprocessing stage (a kind of spatial
filtering), we did not implement it. Finally, we also did not
consider the shadows suppress stage proposed in [15]. The goal
is only to compare the ability of each paradigm to estimate the
underlying density of the data.

The kernel bandwidth (h) was estimated directly from the data
of the sample set, following the method proposed by Elgammal
[15]. The value h for a given pixel is computed as h¼m=

ð0:68n
ffiffiffi
2
p
Þ, where m is the median absolute deviation over the

sample for consecutive values of the pixel (in the tensor-based
algorithms the geodesic distances were used). See more details
in [15].

The performance comparison of the methods is based primar-
ily on a quantitative evaluation in terms of true positive ratio
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Fig. 5. Experiment 2 / Quantitative performance evaluation on the sequences (5–8), using region covariance matrix (RCM), in terms of: true positive ratio (TPR) and false

positive ratio (FPR) / (E, Euclidean; AI, Affine-Invariant; LE, Log-Euclidean; Int, Intrinsic; Ext, Extrinsic). Note that this figure contains the same information that in

Table 4.
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(TPR) and false positive ratio (FPR)

TPR¼
TP

TPþFN
ð44Þ

FPR¼
FP

FPþTN
ð45Þ

where the true positives (TP) are the foreground pixels correctly
detected, the false positives (FP) are the background pixels
erroneously detected as foreground. (FN) and (TN) correspond
to false negatives and true negatives respectively. (FPþTN)
corresponds to the ground-truth background and (TPþFN) is
the ground-truth foreground. Note that the results presented
here are raw data without any postprocessing, e.g. no morpholo-
gical operators were used in the presentation of the results.

7.1. Experiment 1—structure tensor (ST)

As shown in the Figs. 2–4 and Tables 1 and 2. The vector-based
methods in general cannot accurately detect the moving objects,
neither in dynamic scenes nor in the case of foreground objects in
which the color/intensity information is similar to the back-
ground. These methods assume that the scenes are of static
structures with limited perturbation. They do not consider the
correlation between pixels, meaning that their performance will
notably deteriorate when the scenes to be modeled are dynamic
natural scenes, which include image noise, camera motion, some
illumination variation, and repetitive motions like swaying vege-
tation, waving trees, rippling water, etc. They label large numbers
of moving background pixels as foreground when compared to
the tensor-based counterpart (FPR) and also output a huge
amount of false negatives on the inner areas of the moving object
(TPR). The values of the column AVERAGE displayed in Table 1
clearly demonstrate this fact when comparing the vectorial
approaches (GMM[I,Ix,Iy] , KDE[I,Ix,Iy]) vs the tensorial counter-
parts (GMM[ST]-AI , KDE-Int[ST]-AI).

In those scenes, although some pixels significantly changes
over time, they should be considered as background. In all the
experiments, the tensor-based methods outperform largely the
vectorial approaches and achieve accurate detection in the sense
that they handle some variations of the dynamic background,
considering also the correlation between pixels. They use features
that effectively model the spatial correlations of neighbors pixels,
which is very important to accurately label those moving back-
ground pixels. See the tensor-based benefits on Table 2 / Lines:
GMM½I,Ix,Iy�, KDE½I,Ix,Iy�.

The vector-based GMM methods performs poorly at the
beginning of the sequences that do not include foreground objects
and detect as foreground a lot of background pixels. This behavior
is justified by the fact that these methods only use simple



Fig. 6. Experiment 2 / Examples of segmentation results on the sequences (7 and 8), using the RCM as feature.

Table 3
Experiment 1 / parameter values used in the experiments with the structure tensor (ST) as feature. These parameters were used across all vectorial and tensor-based

GMM/KDE algorithms. Note that K is the number of distributions effectively used in average for each pixel (GMM).

1-HighWayI 2-Railway 3-HighWayIII 4-HalwayI 5-Campus 6-HighWayII

GMM parameters

Maximum number of distributions allowed (M) 25 25 25 25 25 25

Number of distributions effectively used (K ) 4 3 3 3 4 4

Learning rate (a) 0.02 0.01 0.01 0.01 0.15 0.25

Threshold (Tg) 0.750 0.700 0.600 0.675 0.750 0.850

KDE parameters

Type of model Long term Short term Long term Long term Long term Long term

Number of samples (N) 50 50 50 50 50 50

Number of frames sampling window (W) 250 50 250 100 100 200

Threshold (Tk) 20e�5 5e�5 20e�5 10e�5 5e�5 20e�5
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features, and so, need to take longer time to train the background
models than the tensor-based methods. On the other hand, the
tensor frameworks handle dynamic motions immediately and
achieve higher accuracy detection at the beginning of the
sequences. The spatial correlations provide a substantial evidence
for labeling the center pixel and they are exploited to sustain high
levels of detection accuracy.

The Riemannian framework was proposed to derive the proper
tools to work within the tensor while taking into account its
special properties. At this point, our claim is that the special
properties of the tensor space should be more naturally handled
by working with Riemannian metrics in both parametric (GMM)
and non-parametric (KDE) tensor-based frameworks. It must
consequently yield more adequate tools to deal with tensors than
the Euclidean counterpart, e.g. the Euclidean metric by seeing the
tensor space as a linear space is completely blind to its curvature,
which implies an inability to exploit all the discriminative
information presented in the tensor components. All the pre-
sented experiments contribute to clearly validate our claim. In
both GMM and KDE tensor-based frameworks, it is visible a
dramatic improvement on the segmentation quality, especially
in the inner areas of the moving object. This improvement is
notable when moving from the conventional Euclidean metric to
the Log-Euclidean metric and it is even stronger when using the



Table 4
Experiment 2 / Quantitative performance evaluation on the sequences (5–8), using the region covariance matrix (RCM) as feature, in terms of: true positive ratio (TPR)

and false positive ratio (FPR) / (E, Euclidean; AI, Affine-Invariant; LE, Log-Euclidean; Int, Intrinsic; Ext, Extrinsic).

Methods 5-Campus 6-HighWayII 7-Ducks 8-Fountain Average

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

GMM [r, g, b] 48.50 34.48 50.63 37.14 44.52 43.85 39.52 33.25 45.79 37.18

GMM [I, Ix, Iy] 54.30 31.05 55.12 34.03 49.28 40.24 44.28 30.18 50.75 33.88

KDE [r, g, b] 55.60 30.13 58.25 32.58 51.85 37.12 46.85 29.47 53.14 32.33

KDE [I, Ix, Iy] 60.10 27.65 63.90 28.10 57.94 34.95 52.94 26.82 58.72 29.38

GMM [RCM]-E 72.75 21.05 71.85 20.35 66.75 27.19 65.05 21.14 69.10 22.43

GMM [RCM]-AI 81.92 10.32 80.39 10.58 76.95 15.13 75.85 11.05 78.78 11.77

GMM [RCM]-LE 81.05 10.73 80.83 10.99 76.21 15.85 75.23 11.64 78.33 12.30

KDE-Int [RCM]-E 76.30 12.08 75.25 13.95 72.38 19.78 70.34 14.26 73.57 15.02

KDE-Int [RCM]-AI 95.05 02.00 94.95 02.05 92.86 06.75 91.95 03.05 93.70 03.46
KDE-Int [RCM]-LE 94.85 02.35 94.07 02.58 92.05 07.03 91.03 03.89 93.00 03.96
KDE-Ext [RCM]-AI 89.71 06.85 88.05 07.01 86.91 10.03 85.30 06.95 87.49 07.71

KDE-Ext [RCM]-LE 94.85 02.35 94.07 02.58 92.05 07.03 91.03 03.89 93.00 03.96

Table 5
Experiment 2 / Comparative evaluation between the structure tensor (ST) and region covariance matrix (RCM), on the sequence 5 (Campus). The differential values (D)

were calculated using the information presented in the column Campus of the Tables 1 and 4 as (D¼Methods A�Methods B). Notice that ðDTPR-þÞ¼

Good and ðDFPR-�Þ ¼Good.

D¼A�B

Methods B¼ST Methods A¼RCM

GMM[RCM]-AI GMM[RCM]-LE KDE-Int[RCM]-AI KDE-Int[RCM]-LE

DTPR DFPR DTPR DFPR DTPR DFPR DTPR DFPR

GMM[ST]-AI þ06.98 �03.76 – – – – – –

GMM[ST]-LE – – þ08.23 -04.20 – – – –

KDE-Int[ST]-AI – – – – þ07.15 �03.52 – –

KDE-Int[ST]-LE – – – – – – þ 07.71 �03.36

Table 6
Experiment 2 / Comparative evaluation between the structure tensor (ST) and region covariance matrix (RCM), on the sequence 6 (HighWayII). The differential values (D)

were calculated using the information presented in the column HighWayII of the Tables 1 and 4 as (D¼Methods A�Methods B). Notice that

ðDTPR-þÞ ¼Good and ðDFPR-�Þ¼Good.

D¼A�B

Methods B¼ST Methods A¼RCM

GMM[RCM]-AI GMM[RCM]-LE KDE-Int[RCM]-AI KDE-Int[RCM]-LE

DTPR DFPR DTPR DFPR DTPR DFPR DTPR DFPR

GMM[ST]-AI þ06.56 �04.62 – – – – – –

GMM[ST]-LE – – þ07.81 �04.87 – – – –

KDE-Int[ST]-AI – – – – þ07.70 �05.90 – –

KDE-Int[ST]-LE – – – – – – þ07.10 �04.55

Table 7
Experiment 2 / Parameters values used in the experiments with the region covariance matrix (RCM) as feature. These parameters were used across all vectorial and

tensor-based GMM/KDE algorithms. Note that K is the number of distributions effectively used in average for each pixel (GMM).

5-Campus 6-HighWayII 7-Ducks 8-Fountain

GMM parameters

Maximum number of distributions allowed (M) 25 25 25 25

Number of distributions effectively used (K ) 4 4 6 5

Learning rate (a) 0.15 0.25 0.05 0.05

Threshold (Tg) 0.750 0.850 0.950 0.925

KDE parameters

Type of model Long term Long term Short term Short term

Number of samples (N) 50 50 50 50

Number of frames sampling window (W) 100 200 50 50

Threshold (Tk) 5e�5 20e�5 15e�5 15e�5
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Affine-Invariant metric. The results proved that the option by a
Riemannian metric has a deep impact on the tensor statistics and,
hence, on the segmentation results. See for example, the benefits
of the Affine-Invariant metric over the Euclidean metric in Table 2
/ Lines: GMM½ST��E, KDE-Int½ST��E.

To be viable, a foreground detection algorithm need to work
properly in complex environments where for instance the back-
ground may be multi-modal and where there is a significant and
constant activity in the scene. Although the multi-modal para-
metric paradigm on tensor domain provided by the GMM perform
relatively well on the analyzed environments, its performance,
however, depends on appropriately setting a number of para-
meters, like the a priori probability of observing the background.
The robustness of that approach highly depends on the nature of
the observed scene. The GMM paradigm is based on the
assumption that each pixel views background states more often
than foreground ones, therefore the states with higher prior
probabilities (weights) and higher concentrations would be con-
sidered as background. Based on this premise, the first states with
higher weights and concentrations, whose combined priori prob-
abilities are greater than a pre-defined weight threshold are
considered as the representative models of background. If the
background is multi-modal and the scene activity is high, it is
sometime impossible to find a threshold allowing all the states
representing the background to be labeled accordingly while
preventing some foreground states to be labeled as background
as well. All the results presented demonstrate that our non-
parametric reformulation of the tensor-based GMM proposed in
[2] improved considerably the segmentation performance. See for
example, the KDE-based benefits over the GMM in Table 2 /

Columns: KDE� Int½ST��AI, KDE� Int½ST�-LE/ Lines: GMM½ST��AI,
GMM½ST��LE.

As shown by Elgammal [15,16] the KDE have been successful,
to model, on Euclidean sample spaces, the nonparametric nature
of complex backgrounds. The results clearly prove, in the tensor
domain, the advantages of the non-parametric paradigm over the
parametric counterpart proposed in [2] in a similar way to what
Elgammal [15,16] did in the vectorial domain. This method can
deal with multi-modality in background tensor distributions
without specifying the number of modes. It is shown that the
tensor-based KDE algorithms endowed with the Riemannian
metrics obtains a much cleaner segmented background (less false
positives) than GMM counterparts and the foreground segmented
is cleaner (less false negatives), better connected for each object,
almost noiseless, and furthermore the contours of the foreground
objects are well delineated. Again, the values of the column
AVERAGE displayed in Table 1 clearly demonstrate the benefits
of the tensorial nonparametric formulations (KDE-Int[ST]-AI,
KDE-Int[ST]-LE) vs the tensorial parametric counterparts (GMM
[ST]-AI, GMM[ST]-LE).

Since the dynamic motions do not repeat exactly, it causes
some performance degradation on the GMM tensor-based, which
detect several background pixels as foreground and also labeled a
considerably number of foreground pixels as background on the
inner areas of the moving objects. The proposed KDE tensor-based
method outperforms the GMM tensor-based, and achieves very
high accuracy in the detection of the moving objects. The fore-
ground regions are accurately segmented using the tensor-based
KDE even though their sizes are small. Some of these regions are
mistakenly identified by the tensor-based GMM. Although the
proposed method also misses some pixels, the overall perfor-
mance of our method is globally better.

As the work presented by Caseiro et al. [2] showed for the
tensor-based GMM paradigm, new points of view on the tensor
space can lead to significantly simpler computations and there-
fore faster foreground detection algorithms. In the experiments
presented herein, we also concluded that the tensor-based algo-
rithms endowed with the Log-Euclidean metric has the same
excellent theoretical properties as the Affine-Invariant metric. In
the case of the tensor-based GMM paradigm, from a practical
point of view, the segmentation results are similar but are
obtained much faster, with an average computation time ratio
of at least 2 in favor of the Log-Euclidean framework. In the case
of the tensor-based KDE paradigm, the conclusions regarding the
segmentation results are similar to those of the GMM counter-
part, i.e. from a practical point of view the segmentation results
between the two Riemannian metrics are also very similar. The
values of the Table 2 (Columns: GMM-[ST]-LE, KDE-Int[ST]-LE /

Lines: GMM-[ST]-AI, KDE-Int[ST]-AI) clearly highlight the residual
difference in the performance between the two Riemannian
metrics. Regarding the computational cost, the tensor-based
KDE[ST]-AI is obviously not a competitive method. The time
consuming is highly dependent of the number of samples used,
mainly because of two reasons: Firstly, although at each time t we
only need to compute once the Ricci curvature tensor R, it is
necessary to calculated N times the normal coordinates of the
point Z in the normal coordinate system centred at Zi; Secondly
(at each time t), it is necessary to compute N times the geodesic
distance between the tensors Z and Zi. The most striking differ-
ence between the two Riemannian metrics in the KDE case resides
in their computational cost, due to the space with a null curvature
induced by the Log-Euclidean metric. The KDE[ST]-LE is much
more simple since we do not need to compute the volume
density function and at each time t we only need to compute
the matrix operation logðZÞ. In fact, if we compare the tensor-
based GMM[ST]-LE algorithm [2] with the KDE[ST]-LE proposed
herein, we conclude that the KDE version is more simple. Despite
of, in the KDE[ST]-LE be necessary to compute N times the
nonnegative function Kð�Þ, the GMM[ST]-LE in practice is more
complex because it involves the computation of several log and
exp matrix operations, which are more time consuming than the
function Kð�Þ used in this work. We conclude that, although the
tensor-based KDE[ST]-AI is slower than both the GMM[ST]-AI9LE
versions, the tensor-based KDE[ST]-LE is faster than all the others
tensor-based approaches. In fact, the KDE[ST]-LE is in average
approximately three times faster than the GMM[ST]-LE method,
and the KDE achieves much better segmentation results in all the
sequences tested.

In all the sequences tested, the results proved that the
extrinsic reformulation of the KDE-Ext[ST]-AI preserve some of
the nonparametric benefits, while speedup the process. See the
extrinsic KDE-based benefits over the GMM-based counterpart in
Table 2 / Column: KDE-Ext[ST]-AI / Line: GMM-[ST]-AI.
Although the segmentation results achieved by the extrinsic
KDE are slightly worse than the intrinsic counterpart, the advan-
tages of the nonparametric paradigm over the parametric version
(GMM) remains. The values of the Table 2 (Column: KDE-Ext[ST]-
AI / Line: KDE-Int[ST]-AI) highlight the loss in the performance
of the extrinsic tensor-based KDE over the intrinsic tensor-based
KDE. Due to the less complexity, this extrinsic KDE algorithm
is in average approximately four times faster than the intrinsic
version.

7.2. Experiments 2—region covariance matrix (RCM)

From the results of the experiments presented in Section 7.1,
we conclude that the sequences 5 and 6 are particularly difficult
scenarios from the background modeling point of view. It is
evident that the motion of the camera and the significative image
noise cause some degradation in the performance of the tensor-
based algorithms using the structure tensor (ST) as feature, when
compared with the rates achieved in the sequences 1–4. The
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region covariance matrix (RCM) has some special properties that
can help in more difficult scene conditions. The noise corrupting
individual samples are largely filtered out with the average filter
during the covariance computation. The covariance is invariant to
the mean changes such as identical shifting of color values, which
is very valuable when scenes are under some varying illumination
conditions, i.e. due to the zero-mean normalization by subtraction
of the sample mean the descriptor achieves some invariance in
the case of photometric and illumination changes.

In order to evaluate the potential benefits of the covariance
matrices as feature, in this second part of the experiments we
tested again the sequences 5 and 6. We also used the sequences
7 and 8 to evaluate the foreground segmentation performance of
the proposed tensor-framework using the RCM feature. In fact,
the sequences 7 and 8 are the most challenging sequences
presented in this work. In the sequence 7, the upper part of the
scene contains heavily swaying trees with nonperiodic motions.
The challenges in the lower part of the scene are that the
background is composed of subtle illumination variations along
with ripples in the water and the color of the ducks and back-
ground is similar. In the sequence 8, the nonperiodic motions of
the spouting fountain and the swaying tree branches above
constitute the main challenges.

At this point, our claim is that the special properties of the RCM
are more suitable to deal with the changeling sequences 5 and 6.
In all the tensor-based experiments (GMM and KDE endowed with
all the metrics) and in both the sequences (5 and 6), the RCM
outperforms the structure tensor as feature (see Tables 5 and 6). It
is notable that in the sequence 5 (Campus) the RCM deals better
with the image noise problem by filtering out the samples during
the covariance computation. See the RCM benefits when applied to
the sequence 5 in the Table 5. The sequence 6 (HighWayII) is even
more changeling because it present image noise and some camera
motion. In this case, it is also clearly visible the improvement on
the segmentation quality provided by the use of the RCM feature,
especially in the false positive rate. The RCM benefits when
applied to the sequence 6 is clearly visible in Table 6.

Regarding the sequences 7 and 8, all the conclusions obtained
in the Section 7.1 for the sequences 1–6 using the structure tensor
(ST), remains when the region covariance matrix (RCM) is used as
feature, i.e. all the five goals described previously are also
confirmed using the RCM as feature (see Figs. 5 and 6 and
Table 4).
8. Conclusions

Kernel density estimators (KDEs) have been successful to
model, on Euclidean sample spaces, the nonparametric nature of
complex and time varying physical processes. Taking into account
the Riemannian structure of the tensor manifold, we derived a
novel nonparametric Riemannian framework on the tensor field,
with application to foreground segmentation. The tensor was
used to convert the image into a more information rich form
(tensor field), to yield latent discriminating features. We pre-
sented the necessary background about differential geometry, i.e.
we focus on the main geometric concepts of Riemannian mani-
folds, nonparametric estimation on such manifolds and the
respective extensions to the tensor manifold, endowed with two
Riemannian metrics (Affine-Invariant and Log-Euclidean). The
explicit formulation of a KDE on the tensor manifold endowed
with the two Riemannian metrics, respecting the non-Euclidean
nature of the space, as well as, the nonparametrically reformulation
of the tensor-based algorithms previously proposed to foreground
segmentation are the core contributions of the paper.
In overall, the paper shows that the consequent usage of the
underlying Riemannian structure of the tensor manifold for
model derivation, in conjunction with a suitable nonparametric
estimation scheme for the underlying density, yields the most
accurate and reliable approach to foreground detection from
tensor-valued images presented so far (i.e. yields the most
accurate technique to estimate the underlying density of the
tensor data).

A careful comparison of the Log-Euclidean and Affine-Invariant
metrics on the KDE algorithms described in this paper, showed
that there are very few differences on the results on foreground
segmentation from real video sequences, but the Log-Euclidean
proved to be considerably faster. In fact, the most striking
difference between the several KDE versions proposed resides in
theirs computational costs. Thus, for this type of application and
for these sequences, the KDE using the Log-Euclidean metric
seems to be perfectly suited. In what regards, the best tensor-
descriptor (structure tensor vs region covariance), the results
confirmed that the RCM is the best choice to do foreground
detection. Although it is a little more time consuming due to the
zero-mean normalization, its special properties proved to be
important in sequences with noise and scenes under some
varying illumination conditions. Moreover, by inducing a space
with a null curvature, the Log-Euclidean metric considerably
simplifies the tensor-based KDE, which results in an algorithm
that is in fact more accurate and faster than all the tensor-based
GMM versions.

We demonstrated in this paper that there are indeed several
generalizations of the kernel density estimator to the tensor
manifold. This is important, since situations in image segmenta-
tion, texture classification, object detection, tracking as well as in
others branches of science, such as applied mathematics, physics,
mechanics, medical imaging, etc., where tensors need to be
processed, are highly varied. As a consequence, the relevance of
each generalization of the KDE and of the associated metric
framework may depend on the application considered.
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