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ABSTRACT

In this paper is proposed a novel statistical learning approach, to
identify cast shadows, and model their generation. We exploit the
theoretically well-founded directional statistics field, in order to for-
mulate the generation of cast shadows as a Mixture of Von Mises-
Fisher distributions (MovMF) on the unit sphere. This formulation
is based on a bi-illuminant physical model of cast shadows, where
no prior assumptions of the spectral power distribution (SPD) of the
direct light sources and ambient illumination in the scene are made.
Founded on a rigorous directional statistics approach, this paramet-
ric framework is capable of modelling the shaded surface behavior in
complex illumination scenes and meet real time requirements. This
better model discriminating cast shadows provides a more compact
representation, and achieve better accuracy, with less data and much
less computation time, compared with non-parametric models pre-
viously proposed. Theoretic analysis and experimental evaluations
demonstrate the effectiveness of the proposed framework.

1. INTRODUCTION

In vision-based aplications, such as video surveillance, cast shadows
are considered a major concern for foreground detection algorithms.
They pose important problems, such as shape and color properties
distortion of the objects, inducing silhouette distortions and object
merging. When a foreground object casts a shadow on a background
surface, the light sources are partially or entirely blocked, reduc-
ing the total energy incident, hence it is induced a variation of its
appearance. Shadow points are expected to have similar chromatic-
ity values but lower luminance. However texture characteristic re-
mains unchanged since shadows do not alter the surfaces. This vari-
ation is one of the main properties used in the literature to detect
cast shadows. It is dependent of the scene composition, such as
the presence of other light sources and the reflectivity properties of
other scene objects. There have been many proposed methods to de-
tect cast shadows assuming that the value of the surface under cast
shadows will be linearly attenuated from the background value, and
thus fall on the line between the background value and the origin of
the color space (linear model). In [1] the brightness component is
separated from the chromaticity in RGB space defining brightness
and chromaticity distortion. However, one main drawback of these
methods is that require to set parameters for different scenes and
can not handle complex and time-varying lighting conditions of the
typical real scenarios. The statistical prevalence of cast shadows had
been exploited to learn the surface appearance under cast shadows in
[2],[3],[4]. Methods that assume the linear model may falsely label
pixels as cast shadows when foreground objects have chromaticity
values similar to that of the background. Furthermore, in some sce-
narios the background value under a cast shadow may not necessary
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attenuate linearly along the line between the value of the correspond-
ing background and the color space origin. This situation occurs be-
cause the light sources may consist of direct sunlight, diffused light
scattered by the sky, and other colored light from nearby surfaces
with different SPD. In outdoor scenes when blocking a surface from
direct sunlight, the light scattered by the sky has a spectrum which
differs from that of the sun. In order to overcome the linear model
problems, in [5] was proposed a model in which the illumination
is aproximated by a ambient illumination term and a punctual light
sources term. Unlike linear model case, these two terms can have
a different SPD. It is only assumed that all punctual light sources
have a common SPD with different power factor and the ambient
illumination is constant over lit and shaded regions. Hence, the am-
bient illumination term determines the direction in color space along
which the shaded background values can be found. Nonparametric
density estimation was used to model surface variation under cast
shadows. In [6] was considered that the shadow model presented in
[5] may fail to deal with environments with complex illumination
conditions. Thus, their work release the prior assumption that punc-
tual light sources have the same profile with only different power
factor and consider that ambient illumination may be not constant,
due slightly changes caused for example by foreground objects cir-
culation. They learn and update the shadow model parameters using
a Gaussian mixture model (GMM) over time.

In this paper we follow the physics-based approach proposed in
[6], but we introduce a novel method to identify cast shadows, mod-
eling parametrically the shadow direction (Ŝ). Ŝ is a unitary vector
in a coordinate system centered on BG (Fig.1), its direction is rep-
resented in spherical coordinates. Since we are dealing with data
over the sphere, S2, we wish to express this data using distributions
over this domain. A natural model for directional data is provided
by the von Mises-Fisher distribution (vMF) on the unit hypersphere.
We propose model this complex data using a mixture model tailored
for directional data distributed on the surface of a unit hypersphere,
consisting of a MovMF. This parametric model is introduced based
on the idea of modeling shadow direction as a mixture of directional
statistics distributions which provides a statistical interpretation of
the shadow direction. Notice that, such decomposition cannot be
achieved with non-parametric models. Our model is compact in that
it requires very few parameters to represent complicated geometries.
In particular, low-dimensional parametric models of shadow direc-
tion play vital roles since they enable the formulation of such inverse
vision problems as parameter estimation.

2. DIRECTIONAL STATISTICS

Directional statistical techniques take into consideration the struc-
ture and nature of the sample spaces and develop probability models
based on which angular data can be described. To analyze statis-
tically directional data, the vMF [7] [8] has been developed by the
analogy with the Gaussian distribution. More general and complex



Fig. 1: Left : Shadow Direction Ŝ representation. Middle: Physical
model proposed in [5]. Right : Physical model proposed in [6].

models over spherical domains, e.g., Fisher-Binghamor [7], may
not be viable for real cases since the parameter estimation problem
is signicantly more dificult, and require substantially more training
data. Unlike these models, the vMF has fewer variables and involves
constraints which are more simpler to satisfy. The vMF is particu-
larly useful for statistical inference of data that is inherently direc-
tional in nature and has been adopted in directional statistics because
it results much more suitable to treat periodic variables. Gaussians
are often used [6] since they are well known and suitable statistical
treatment has been deeply analyzed. However, in the case of angular
variables, Gaussians can be affected by errors due to the disconti-
nuity in the origin, thus are inadequate for characterizing such data.
Treating periodic variable by setting a value as origin and then ap-
plying traditional gaussian will bring to results that were strongly
dependent on the arbitrary choice of the origin. This limitation does
not affect vMF because it is independent on the origin. In fact, vMF
yields many of the key properties for statistical inference that the
normal distribution has for linear data. We tackle the challenging
problem of deriving a low-dimensional parametric model that can
achieve accuracy comparable to non-parametric models [5]. Since
non-parametric models are essentially raw measurements, they un-
doubtedly have strong advantages. However, when using such non-
parametric models for solving some inverse problems in computer
vision, we are cursed by the high-dimensionality of data. Further-
more, the accuracy of non-parametric models essentially depend on
the sampling of the data and thus necessitates very dense measure-
ments to achieve certain accuracy. The statistical model presented
lays the foundation for deriving canonical probabilistic formulations,
for this physics-based vision problem, in order to estimate a cor-
rect parametrization for it. The vMF is a probability distribution
on the hypersphere Sd−1, embedded in Rd for directional data dis-
tributed unimodally with rotational symmetry. In its most general
form, the probability density function of the vMF distribution of a
d-dimensional unit random vector x, generalized to a hypersphere
Sd−1 (i.e., x ∈ Rd and ||x|| = 1, or equivalently x ∈ Sd−1) is
given byh
p(x|µ, κ) = cd(κ)eκµ

T x
i »

cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)

–
(1)

where ||µ|| = 1, κ ≥ 0 and d ≥ 2. Thus, x, µ ∈ Sd−1 and cd(κ)
is the normalizing constant. Ir(.) is the rth order modified Bessel
function of the first kind. The density p(x|µ, κ) is parameterized by
the mean direction µ, and the �concentration parameter, κ (analogous
to the precision or inverse of the variance in Gaussian cause) so-
called because it characterizes how strongly the unit vectors drawn
according to p(x|µ, κ) are concentrated about the mean direction
µ, indicates the degree of directional dispersion. In particular when
κ = 0, p(x|µ, κ) reduces to the uniform density on Sd−1 (isotropic
scattering) and as κ → ∞, p(x|µ, κ) tends to a point density (scat-
tering becomes extremely non-isotropic). The ordinary sphere oc-

curs when d = 3, which is of our immediate interest in shadow
direction problem. In this case the probability density function of
the vMF distribution has the form

p(x|µ, κ) =
κ

4πsinh(κ)
eκµ

T x (2)

Considering a MovMF as the underlying generative model for
directional data, the probability density function of the MovMF
model is given by p(x|Θ) =

PK
j=1 αjp(x|θj) where Θ =

{α1, ..., αK , θ1, ..., θK} where αj is the weight (prior probabil-
ity) of the jth vMF state in the mixture model, with

PK
j=1 αj = 1,

αj ≥ 0, and p(x|θj) is a single vMF with parameters θj = (µj , κj).
The clustering of data lying on the surface of a hypersphere is

posed as a maximum likelihood estimation problem, which requires
the definition of a complete procedure to derive the mixture param-
eters. The Expectation Maximization (EM) is a general technique
for finding maximum likelihood estimators in latent variable mod-
els, in cases where analytic solutions are difficult or impossible.
It has been widely used to estimate the mixture parameters due to
its simplicity and numerical stability. Banerjee in [8] proposed two
variants of the EM algorithm and appropriate approximations to esti-
mate the mixture parameters. These two variants are centered on soft
and hard-assignment schemes (respectively called soft-movMF and
hard-movMF). The soft-movMF algorithm, assigns soft (or proba-
bilistic) labels to each point given by the posterior probabilities (3).
In soft-movMF case the mixture parameters are estimated exactly
following the Banerjee’s derivations given by

p(j|x,Θ) =
αjp(x|θj)Pk
l=1 αlpl(x|θl)

(3)
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–
(5)

In this paper we use the hard-movMF. The hard assignment scheme
is a winner-takes-all strategy. That is, in E-step, a data point is as-
signed to one and only one cluster which has the highest posterior
probability given by (3), i.e. it is performed a disjoint k-partitioning
of data based on the posteriors. The crucial difference in this case is
that the posterior probabilities p(j|x,Θ) are allowed to take only bi-
nary values (0/1). Numerical estimation of κ is non-trivial, since it
involves functional inversion of ratios of Bessel functions. We here
use a asymptotic approximation, proposed in [8].

3. ESTIMATION OF MODEL PARAMETERS

The first step in our approach is to estimate the shadow direction
(Ŝ). However, to accurately capture this direction, samples obtained
from background modeling process must be filtered out. We apply
a weak classifier as a pre-filter to evaluate every moving pixels to
select possible and filter out some impossible shadow points. The
classifier used [9] determine whether a pixel is possibly shadow by
measuring the similarity of color and texture between foreground
and background. This is done by estimating the Color Normalized
Cross-Correlation (CNCC) between each segmented pixel It and
the corresponding background pixel Bt. More precisely, a pixel is
classified as shadow if its texture is correlated with the correspond-
ing texture of Bt. The main goal is to determine whether a pixel
value fits with the property of cast shadows and not necessarily to
detect shadows accurately. Once the shadow direction has been es-
timated, we use a decomposition similar to [5], with a illumination



attenuation β term and a chromaticity distortion CD term. The il-
lumination attenuation is obtained as in [5], but in our case the term
CD is computed probabilistically, using the MovMF models.

3.1. Cast Direction Estimation : (Ŝ)

After clustering the data lying on the surface of the sphere, the next
step is to estimate for each pixel the shadow direction Ŝ associated to
its background values, i.e. the direction, in color space, along which
the value of a background surface will be found under cast shad-
ows. The MovMF is based on the assumption that each pixel views
shadows states more often than foreground ones, therefore the states
with higher prior probabilities (weights) and higher concentrations
would be considered as shadows. Based on this premise, the first
B states with higher weights and concentrations, whose combined
priori probabilities αj is greater than a pre-defined weight threshold
T, (B = arg minb

Pb
j=1 αj > T), are considered as the repre-

sentative models of shadows. For each sample xi we compute its
direction ŝi relative to BG. The idea is to attempt to match the cur-
rent observation ŝi at a given pixel with one of the B states. If the
observed sample is inside of 99% confidence interval of one of these
distributions, we consider the mean of this distribution as the cast
shadow direction in color space on which background surface val-
ues under cast shadows are found. The chromaticity distortion CD
term is now calculated as the likelihood of the sample with respect
to this distribution. Pixels that are outside of 99% confidence inter-
val of all B distributions are automatically classified as foreground
pixels (CD = 0) Numerical estimation of the confidence interval
in vMF case is non-trivial, but several closed and fast solutions have
been proposed. For exact equations, please refer to [7].

3.2. Illumination Attenuation Estimation : (β)

Even if samples are situated on the shadow direction, this does not
mean than these samples represent cast shadows. If this decision
is only based on this criterion would label objects with different
shades of gray as shadow. To further improve the differentiating
ability, we model parametrically the posterior distribution of light-
ing attenuation β, for both cast shadow P (z = SD|β) and fore-
ground P (z = FG|β) hypothesis (β is computed as in [5]). The
pixel-based illumination variation is modeled by a one dimensional
GMM, separately for each one of these hypothesis, using a online
K-means algorithm as in [10]. Note that, henceforth the indice z
presented in the next equations/variables can take values z = FG
(foreground) or z = SD (shadow). The first Bz states of the GMM
with higher weights and smaller variances in the mixture are consid-
ered as the representative models of the illumination variation. The
index Bz is determined by Bz = argminb

Pb
j=1 α

z
j > Tz , where

Tz is a pre-defined threshold. The likelihood P (β|z) is generated
as follows"
P (β|z) =

1

Wz

BzX
j=1

αzjN (β|θzj )

#8><>:
rw = Ci,z(

1− r0PK
l=1 cl

) + r0

rg = Ci,z(
1− r0

cj
) + r0

(6)
where Wz =

PBz
j=1 α

z
j is a normalization constant. rw, rg are the

learning rates, respectively for the mixing weights and the Gaussian
parameters (means and variances). cj is the number of matches of
the jth Gaussian state, and r0 is a small constant (≈ 0.005). An
effective learning algorithm is used since the conventional GMM
learning approach when applied to pixel-based models may suffer
from slow learning due to insufficient training data. Since new sam-
ples may not appear at the same pixel in each frame, when fore-
ground activities are rare. To address this problem, the GMM is

updated through a confidence-rated learning approach. The updat-
ing scheme follows the formulation of the combination of incremen-
tal EM learning and recursive filter as proposed in [11], which is
signicantly faster than conventional online updating. This method
will follow the incremental EM learning, in the initial learning stage
and approaches to recursive filter over time. Note that, since in our
method, we model the illumination variation separately for each one
of two hypothesis, unlike in [6] we not need use logistic regression
similar to that in [11], to extract the likelihoods P (β|z) from GMM.
The learning rates (6) are controlled by a confidence value equal
to Ci,z = P (FS|x) ∗ CD ∗ CNCC in (z = SD) case. We in-
corporate cross-correlation (CNCC) information for improving the
shadow discriminative ability and the convergent rate. More weight
is given to samples which are close to the cast shadow direction, are
not background values and are correlated with background texture.
Instead of perform a blind update, which treats each sample in the
same way, this way permit weight each sample with different im-
portance. If the model is updated using a potential shadow point,
then this sample is considered relatively more important than oth-
ers. The model needs not to obtain numerous samples to converge,
but a few samples having high confidence value are sufficient. Ob-
servations with higher confidence values will converge faster than
those with low ones. In (z = FG) case this confidence is given by
Ci,z = P (FS|x)∗CD∗ (1−CNCC). As a result, both illumina-
tion attenuation likelihoods are generated from samples that are ei-
ther cast shadows or foreground samples sharing similar illuminance
and color characteristics. The posteriors on shadow P (z = SD|β)
and foreground P (z = FG|β) are calculated applying the Bayes
theorem as follows:

P (z|β) =
P (z)P (β|z)

P (SD)P (β|SD) + P (FG)P (β|FG)
(7)

where P (FG) and P (SD) are the priors, computed by summing
the sample confidences (P (z) =

P
iCi,z), and then normalized

such that (P (FG) + P (SD) = 1). These posteriors as restricted,
such that P (SD|β < 0) = 0 and P (FG|β < 0) = 1, i.e. samples
brighter than the background cannot be cast shadow.

4. POSTERIOR PROBABILITIES

In this section, we combine the posteriors P (SD|β) and P (FG|β)
with CNCC and CD information, in order to compute the pos-
terior distributions P (SD|x) and P (FG|x), respectively under
shadow and foreground hypothesis. These posteriors are computed
by decomposing respectively P (SD|x) and P (FG|x) over the
(BG,FS) domain (FS = FG ∪ SD). They can then be used
directly to segment cast shadow samples from non-background sam-
ples. Note that P (SD|x,BG) = 0 and P (FG|x,BG) = 0. The
probability that a pixel belongs to either the background P (BG|x)
or the foreground P (FS|x), are computed from a GMM [10], used
to background modeling.

4.1. Cast Shadow Posterior : P(SD|x)

The cast shadow posterior is given by P (SD|x) = P (SD|x,FS)∗
P (FS|x). The term P (SD|x,FS) is decomposed into two parts:
(D) and (ND), which stand for samples that are situated on the
cast shadow direction or not, respectively. If a sample are are
outside of confidence interval of all MovMF states, then the proba-
bility of belonging to shadow equals to zero (P (S|x,ND,FS) =
0). Therefore we have P (SD|x,FS) = P (SD|x,D,FS) ∗
P (D|x,FS), where P (D|x,FS) is given by CD. In order to cal-
culate P (SD|x,D,FS), we take into account the cross-correlation



information. Samples can be seen as belonging two categories:
correlated (C) or not (NC). It follows that P (SD|x,D,FS) =
P (SD|x,D,FS,C)∗P (C|x,D,FS)+P (SD|x,D,FS,NC)∗
P (NC|x,D,FS). Since β can be seen as the sufficient statistics
for x, the term P (SD|x,D,FS,C) is equal to P (SD|β). The
value of P (SD|x,D,FS,NC) is kept different of zero and small
(= κP (SD|β)) with (κ ≤ 0.15), in order to take into account
the possibility that we could observe uncorrelated samples for cast
shadow samples (noise). Finally, P (C|x,D,FS) = CNCC and
P (NC|x,D,FS) = (1−CNCC).

4.2. Foreground Posterior : P(FG|x)

The procedure to estimate the P (FG|x) is similar to the P (SD|x)
case. If a sample are are outside of confidence interval of all MovMF
states, then the probability of belonging to foreground equals to one
(P (FG|x,ND,FS) = 1). The term P (FG|x,D,FS,NC) =
P (FG|β), and the value of P (FG|x,D,FS,C) is kept different
of zero and small (= κP (FG|β)) with (κ ≤ 0.15), in order to take
into account the possibility that we could observe correlated samples
for foreground samples.

Fig. 2: Left : Original frame. Middle: Shadow Posterior P (SD|x).
Right : Binary Classification - Shadow (red) - Foreground (green)

Highway I Highway II Hallway
Methods η% ξ% η% ξ% η% ξ%
Proposed 75.63 84.15 76.13 80.67 72.85 89.94

PhGMM [6] 72.34 84.98 72.70 79.89 71.69 88.15
PhKernel [5] 70.50 84.40 68.40 71.20 72.40 86.70

LGf [2] 72.10 79.70 - - - -
GMSM [3] 63.30 71.30 58.51 44.40 60.50 87.00

Table 1: Quantitative results

5. EXPERIMENTAL RESULTS

In order to analyze the effectiveness of the proposed method, we
conduct several experiments on three video sequences, presented in
previous literature, including both indoor and outdoor environments.
The accuracy of our approach is compared quantitatively to other
methods to shadow detection cited earlier when results are available.
This evaluation use the most employed quantitative metrics utilized
to evaluate the shadow detection performance, namely shadow de-
tection (η) and discrimination rate (ξ), presented in [12]. Cast shad-
ows induce a significant color shift, therefore breaking the shadow
linear approximation. Since this color shift is modeled by our ap-
proach, we generate posterior distributions that are faithful to the
scene. Our method can deal with the situation that shadows first
appear in complex scenes and unknown illumination conditions as
well as rare foreground activity. Through experimentation on bench-
mark data we clearly demonstrate the advantage of using a direc-

tional statistics based approach. The results were obtained by thresh-
olding the shadow posterior and show that our model performs bet-
ter than the parametric approach based on GMM [6]. Our method
can achieve higher accuracy comparable to the state-of-the-art non-
parametric model [5], specially when the sampling of measurements
is sparse and with a much smaller footprint. According to the over-
all performance, our approach is more effective in describing back-
ground surface variation under cast shadows, compared to the other
analysed methods. Qualitative and quantitative results presented val-
idate the model we have introduced based on the physical properties
of the light sources and surface behavior. The results also show that
we can successfully learn the model parameters, i.e. the shadow di-
rection and the illumination attenuation with respect to a background
sample, under both shadow and foreground hypothesis. Note that the
proposed approach is pixel-based, and the results presented here are
raw data without any postprocessing. However, we stress that the
posterior probabilities can be incorporated with a context model that
incorporate spatial and temporal coherence using smoothness con-
straints, to improve the accuracy, and yield impressive results.

6. CONCLUSION

We introduced a novel method to identify cast shadows and model
their generation using directional statistics. Understanding surface
variation under shadows, requires that we understand how materi-
als appear under realistic illumination conditions. Absent that un-
derstanding, shadow detection become more difficult since simple
assumptions about how material colors behave under varying illumi-
nation create apparently random effects. We exploit a new physical
model of cast shadows, free from prior assumptions of the SPD of
illumination sources. Taking into account the structure and nature of
the sample space we model parametrically the cast shadow direction.
It can adapt to the illumination changes, particularly for the back-
ground under complex lighting conditions. This low-dimensional
model requires very few parameters to represent complicated ge-
ometries. It achievies higher accuracy compared to non-parametric
models, with a much smaller footprint and less time requirements.
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