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Convolutional Neural Networks (CNN) are ubiquitous in Computer Vision

* Thefirst stage in most image
recognition pipelines is a CNN.
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Convolutional Neural Networks (CNN) are ubiquitous in Computer Vision
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« Alarge part of its success is due to
translation-equivariance.

* Translating the input image also
translates the predictions.

Translation by t
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fe(x) = 7 (f (x))

CNN Input
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Why translation-equivariance?

* Vastly fewer parameters
tolearnin linear layers.

For example, ResNet’s 15t layer:
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* 9,408 convolutional parameters. f ’
¢ ~1.2 x 10 if simple linear layer (FC)!

 Less computation (limited filter support). Translation by ¢

 Local memory access (faster). Z(Tt(i)) =7 (f(x))

« Reflects statistics of natural images. CNN ' Input
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Image statistics are largely invariant to other transformations (scale, rotation, etc).

— Can we get the same benefits in those cases?

Output translation Output rotation Problems:

% % . . . .
Y [T Y [T » Spatially-varying filter, requires
computing transformation at every step.

X X .
ﬁ ﬁ » Loses access to modern fast convolution
—>

algorithms (Winograd, FFT).

Input translation
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Inspiration: Log-Polar Transform
* Awell-known trick from signal

processing.

* Remaps (warps) space according to:

(w,v) = (1,0)

r = logu? + v?
v

0 =tan~! (—)
u

(E.g. by bilinear interpolation.)
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Inspiration: Log-Polar Transform

Scale/rotation
in the original space (u, v)

—

Horizontal/vertical translation
in the warped space (7, 0)

A CNN in this warped space will
implicitly work with scales/rotations.




Generalizing

OXFORD

Observation The log-polar interpolation (warp) grid

can be generated as follows:
« Take an arbitrary pivot point x,.

* Consider an Og
and an Or
(w.r.t. the origin e).

* Repeatedly apply elementary
scales/rotations to x, to obtain the
grid points.

(n scales, m rotations -» n X m grid)
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= Does this process generalize to other transformations?

« Answer:Yes! (Proof in the paper.)

Requirements:
« 2D parameter-space (e.g. scale + rotation).

» Transformation group G must be Abelian
(i.e., composition of transformations does not
depend on their order, gh = hg, for g, h € G).
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Scale/

rotation
* We can create analogues of the log-

polar warp for many other spatial l
transformations. Warp grid

» They guarantee equivariance to

aspect ratio, smooth deformations,
and some 3D operations. Warped
image
/‘\
J

Transformed
image




Transformation examples b

UNIVERSITY OF

0),4:(0)24D)
Scale/ Horizontal /
rotation vertical scale
* We can create analogues of the log-
polar warp for many other spatial l
transformations. Warp grid

» They guarantee equivariance to

aspect ratio, smooth deformations,
and some 3D operations. Warped
image |
/\\

Transformed
image
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Transformation examples .
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Scale/ Horizontal / 3D rotation
W ¢ I f th | rotation vertical scale (yaw/pitch)
. e can create analogues of the log- I
polar warp for many other spatial l
transformations. Warp grid [

» They guarantee equivariance to
aspect ratio, smooth deformations,

and some 3D operations. Warped
image

Transformed
image
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w
A recipe for transformation-equivariant CNNs X X l,
—>  Warp > % )y

1. (Offline.) Generate warp grid from
elementary transformations.

2. Apply warp to input (bilinear interpolation). Input image x

3. Apply standard convolutional operators.

The result can be shown to be equivariant
to the chosen transformation.




Experiments

Google Earth dataset
Vehicle pose estimation

(Scale/rotation equivariance)
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AFLW dataset
Head pose estimation

(3D rotation equivariance)

ROT. ERR.  SCALE ERR.

YAW ERR. PITCH ERR.

CNN+FC 22.54 5.04
CNN+SOFTARGMAX 9.36 4.87
WARPED CNN 8.29 4.79

(DIELEMAN ET AL., 2015) 31.11 4.29

CNN+FC 12.56 6.59
STN (JADERBERG ET AL., 2015) 13.65 7.22
WARPED CNN 7.07 5.28
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« Convolutional operators can be generalized
to a broad class of spatial transformations.

 We present a construction based on a single warp
(negligible overhead) and standard convolutions.

* This allows us to train fast CNNs that are
equivariant to other useful transformations.

* Future work: mixing filter banks of different
transformations inside a CNN.




