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Convolutional Neural Networks (CNN) are ubiquitous in Computer Vision

• The first stage in most image
recognition pipelines is a CNN.

Translation-equivariance and CNNs
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Translation by 𝑡

Input

• A large part of its success is due to 
translation-equivariance.

• Translating the input image also 
translates the predictions.



4

Why translation-equivariance?

Translation-equivariance and CNNs
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CNN
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Translation by 𝑡

Input

• Vastly fewer parameters
to learn in linear layers.

For example, ResNet’s 1st layer:

• 9,408 convolutional parameters.

• ~1.2 × 1011 if simple linear layer (FC)!

• Less computation (limited filter support).

• Local memory access (faster).

• Reflects statistics of natural images.
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Problems:

• Spatially-varying filter, requires 
computing transformation at every step.

• Loses access to modern fast convolution 
algorithms (Winograd, FFT).

_________-equivariance and CNNs?

𝑦

𝑥

Input translation

Output translation

𝑦

𝑥

Output rotation

Image statistics are largely invariant to other transformations (scale, rotation, etc).

⇒Can we get the same benefits in those cases?
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• A well-known trick from signal 
processing.

• Remaps (warps) space according to:

Inspiration:  Log-Polar Transform

The mind-bending Log-Polar Transform

(𝑢, 𝑣) ↦ (𝑟, 𝜃)

𝑟 = log 𝑢2 + 𝑣2

𝜃 = tan−1
𝑣

𝑢

𝑢 →

←
𝑣

⟵ 𝑟

←
𝜃

(E.g. by bilinear interpolation.)
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Horizontal/vertical translation
in the warped space (𝑟, 𝜃)

Inspiration:  Log-Polar Transform

The mind-bending Log-Polar Transform

𝑢 →

←
𝑣

⟵ 𝑟

←
𝜃

Scale/rotation
in the original space (𝑢, 𝑣)

⟺

A CNN in this warped space will 
implicitly work with scales/rotations.
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The log-polar interpolation (warp) grid
can be generated as follows:

• Take an arbitrary pivot point 𝑥0.

• Consider an elementary scale 𝛿S
and an elementary rotation 𝛿R
(w.r.t. the origin    ).

• Repeatedly apply elementary 
scales/rotations to 𝑥0 to obtain the 
grid points.

(𝑛 scales, 𝑚 rotations →𝑛 ×𝑚 grid)

Generalizing

Observation

𝛿R

𝑢𝛿S
𝑢

𝑢𝛿S
2

2𝛿R
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Requirements:

• 2D parameter-space (e.g. scale + rotation).

• Transformation group 𝒢 must be Abelian
(i.e., composition of transformations does not 
depend on their order, 𝑔ℎ = ℎ𝑔, for 𝑔, ℎ ∈ 𝒢).

Generalizing

𝛿R

𝑢𝛿S
𝑢

𝑢𝛿S
2

2𝛿R

⇒Does this process generalize to other transformations?

• Answer: Yes! (Proof in the paper.)
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Transformation examples

Scale /
rotation

Warp grid

Warped 
image

Transformed 
image

• We can create analogues of the log-
polar warp for many other spatial 
transformations.

• They guarantee equivariance to 
aspect ratio, smooth deformations, 
and some 3D operations.
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Transformation examples

Horizontal / 
vertical scale

Scale /
rotation

Warp grid

Transformed 
image
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Transformation examples

Horizontal / 
vertical scale

Scale /
rotation

3D rotation
(yaw/pitch)

Warp grid

Transformed 
image

• We can create analogues of the log-
polar warp for many other spatial 
transformations.

• They guarantee equivariance to 
aspect ratio, smooth deformations, 
and some 3D operations. Warped 

image
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1. (Offline.) Generate warp grid from 
elementary transformations.

2. Apply warp to input (bilinear interpolation).

3. Apply standard convolutional operators.

Transformation-equivariant CNNs

∗

𝑤

Warp
𝑥 𝑥′ 𝑦

A recipe for transformation-equivariant CNNs

Input image 𝑥 Warped image 𝑥′

The result can be shown to be equivariant 
to the chosen transformation.
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Experiments

Google Earth dataset
Vehicle pose estimation

(Scale/rotation equivariance)

AFLW dataset
Head pose estimation

(3D rotation equivariance)
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Conclusions

• Convolutional operators can be generalized
to a broad class of spatial transformations.

• We present a construction based on a single warp 
(negligible overhead) and standard convolutions.

• This allows us to train fast CNNs that are 
equivariant to other useful transformations.

• Future work: mixing filter banks of different 
transformations inside a CNN.

𝛿R

𝑢𝛿S
𝑢

𝑢𝛿S
2

2𝛿R


