Warped Convolutions: Efficient Invariance to Spatial Transformations

João F. Henriques
Andrea Vedaldi

Translation-equivariance and CNNs

Convolutional Neural Networks (CNN) are ubiquitous in Computer Vision

- The first stage in most image recognition pipelines is a CNN.

Translation-equivariance and CNNs

Convolutional Neural Networks (CNN) are ubiquitous in Computer Vision

- A large part of its success is due to translation-equivariance.
- Translating the input image also translates the predictions.

Translation by t

$$
\underbrace{f}_{\text {CNN }}\left(\tau_{t}(x)\right)=\tau_{t}(f(x))
$$

Translation-equivariance and CNNs

Why translation-equivariance?

- Vastly fewer parameters to learn in linear layers. For example, ResNet's $1^{\text {st }}$ layer:
- 9,408 convolutional parameters.

- $\sim 1.2 \times 10^{11}$ if simple linear layer (FC)!
- Less computation (limited filter support).
- Local memory access (faster).

Translation by t

$$
f(\tau_{t}(\underbrace{x}))=\tau_{t}(f(x))
$$

CNN Input

- Reflects statistics of natural images.

-equivariance and CNNs?

Image statistics are largely invariant to other transformations (scale, rotation, etc).
\Rightarrow Can we get the same benefits in those cases?

Output translation

Input translation

Output rotation

Problems:

- Spatially-varying filter, requires computing transformation at every step.
- Loses access to modern fast convolution algorithms (Winograd, FFT).

The mind-bending Log-Polar Transform

Inspiration: Log-Polar Transform

- A well-known trick from signal processing.
- Remaps (warps) space according to:

$$
\begin{aligned}
& (u, v) \mapsto(r, \theta) \\
& r=\log \sqrt{u^{2}+v^{2}} \\
& \theta=\tan ^{-1}\left(\frac{v}{u}\right)
\end{aligned}
$$

(E.g. by bilinear interpolation.)

The mind-bending Log-Polar Transform

Inspiration: Log-Polar Transform

- A well-known trick from signal processing.
- Remaps (warps) space according to:

$$
\begin{aligned}
& (u, v) \mapsto(r, \theta) \\
& r=\log \sqrt{u^{2}+v^{2}} \\
& \theta=\tan ^{-1}\left(\frac{v}{u}\right)
\end{aligned}
$$

(E.g. by bilinear interpolation.)

The mind-bending Log-Polar Transform

Inspiration: Log-Polar Transform

- A well-known trick from signal processing.
- Remaps (warps) space according to:

$$
\begin{aligned}
& (u, v) \mapsto(r, \theta) \\
& r=\log \sqrt{u^{2}+v^{2}} \\
& \theta=\tan ^{-1}\left(\frac{v}{u}\right)
\end{aligned}
$$

(E.g. by bilinear interpolation.)

The mind-bending Log-Polar Transform

Inspiration: Log-Polar Transform

- A well-known trick from signal processing.
- Remaps (warps) space according to:

$$
\begin{aligned}
& (u, v) \mapsto(r, \theta) \\
& r=\log \sqrt{u^{2}+v^{2}} \\
& \theta=\tan ^{-1}\left(\frac{v}{u}\right)
\end{aligned}
$$

(E.g. by bilinear interpolation.)

The mind-bending Log-Polar Transform

Inspiration: Log-Polar Transform

- A well-known trick from signal processing.
- Remaps (warps) space according to:

$$
\begin{aligned}
& (u, v) \mapsto(r, \theta) \\
& r=\log \sqrt{u^{2}+v^{2}} \\
& \theta=\tan ^{-1}\left(\frac{v}{u}\right)
\end{aligned}
$$

(E.g. by bilinear interpolation.)

The mind-bending Log-Polar Transform

Inspiration: Log-Polar Transform

- A well-known trick from signal processing.
- Remaps (warps) space according to:

$$
\begin{aligned}
& (u, v) \mapsto(r, \theta) \\
& r=\log \sqrt{u^{2}+v^{2}} \\
& \theta=\tan ^{-1}\left(\frac{v}{u}\right)
\end{aligned}
$$

(E.g. by bilinear interpolation.)

The mind-bending Log-Polar Transform

Inspiration: Log-Polar Transform

- A well-known trick from signal processing.
- Remaps (warps) space according to:

$$
\begin{aligned}
& (u, v) \mapsto(r, \theta) \\
& r=\log \sqrt{u^{2}+v^{2}} \\
& \theta=\tan ^{-1}\left(\frac{v}{u}\right)
\end{aligned}
$$

(E.g. by bilinear interpolation.)

The mind-bending Log-Polar Transform

Inspiration: Log-Polar Transform

- A well-known trick from signal processing.
- Remaps (warps) space according to:

$$
\begin{aligned}
& (u, v) \mapsto(r, \theta) \\
& r=\log \sqrt{u^{2}+v^{2}} \\
& \theta=\tan ^{-1}\left(\frac{v}{u}\right)
\end{aligned}
$$

(E.g. by bilinear interpolation.)

The mind-bending Log-Polar Transform

Inspiration: Log-Polar Transform

- A well-known trick from signal processing.
- Remaps (warps) space according to:

$$
\begin{aligned}
& (u, v) \mapsto(r, \theta) \\
& r=\log \sqrt{u^{2}+v^{2}} \\
& \theta=\tan ^{-1}\left(\frac{v}{u}\right)
\end{aligned}
$$

(E.g. by bilinear interpolation.)

The mind-bending Log-Polar Transform

Inspiration: Log-Polar Transform

- A well-known trick from signal processing.
- Remaps (warps) space according to:

$$
\begin{aligned}
& (u, v) \mapsto(r, \theta) \\
& r=\log \sqrt{u^{2}+v^{2}} \\
& \theta=\tan ^{-1}\left(\frac{v}{u}\right)
\end{aligned}
$$

(E.g. by bilinear interpolation.)

The mind-bending Log-Polar Transform

Inspiration: Log-Polar Transform

- A well-known trick from signal processing.
- Remaps (warps) space according to:

$$
\begin{aligned}
& (u, v) \mapsto(r, \theta) \\
& r=\log \sqrt{u^{2}+v^{2}} \\
& \theta=\tan ^{-1}\left(\frac{v}{u}\right)
\end{aligned}
$$

(E.g. by bilinear interpolation.)

The mind-bending Log-Polar Transform

Inspiration: Log-Polar Transform

Scale/rotation
 in the original space (u, v)
 $$
\Leftrightarrow
$$
 Horizontal/vertical translation
 in the warped space (r, θ)

A CNN in this warped space will implicitly work with scales/rotations.

Generalizing

Observation

The log-polar interpolation (warp) grid can be generated as follows:

- Take an arbitrary pivot point x_{0}.
- Consider an elementary scale δ_{S} and an elementary rotation δ_{R} (w.r.t. the origin •).
- Repeatedly apply elementary scales/rotations to x_{0} to obtain the grid points.
(n scales, m rotations $\rightarrow n \times m$ grid)

Generalizing

\Rightarrow Does this process generalize to other transformations?

- Answer: Yes! (Proof in the paper.)

Requirements:

- 2D parameter-space (e.g. scale + rotation).
- Transformation group \mathcal{G} must be Abelian (i.e., composition of transformations does not depend on their order, $g h=h g$, for $g, h \in \mathcal{G}$).

Transformation examples

- We can create analogues of the logpolar warp for many other spatial transformations.
- They guarantee equivariance to aspect ratio, smooth deformations, and some 3D operations.

Transformation examples

- We can create analogues of the logpolar warp for many other spatial transformations.
- They guarantee equivariance to aspect ratio, smooth deformations, and some 3D operations.

Transformation examples

- We can create analogues of the logpolar warp for many other spatial transformations.

Transformation-equivariant CNNs

A recipe for transformation-equivariant CNNs

1. (Offline.) Generate warp grid from elementary transformations.
2. Apply warp to input (bilinear interpolation).
3. Apply standard convolutional operators.

The result can be shown to be equivariant to the chosen transformation.

Input image x

Warped image x^{\prime}

Experiments

Google Earth dataset

Vehicle pose estimation
(Scale/rotation equivariance)

	Rot. ERR.	SCALE ERR.
CNN+FC	22.54	5.04
CNN+SOFTARGMAX	9.36	4.87
WARPED CNN	8.29	4.79
(DIELEMAN ET AL., 2015)	31.11	4.29

AFLW dataset

Head pose estimation
(3D rotation equivariance)

	YAW ERR.	PITCH ERR.
CNN+FC	12.56	6.59
STN (JADERBERG ET AL., 2015)	13.65	7.22
WARPED CNN	7.07	5.28

Conclusions

- Convolutional operators can be generalized to a broad class of spatial transformations.
- We present a construction based on a single warp (negligible overhead) and standard convolutions.

- This allows us to train fast CNNs that are equivariant to other useful transformations.
- Future work: mixing filter banks of different transformations inside a CNN.

