

# Warped Convolutions: Efficient Invariance to Spatial Transformations

### João F. Henriques

Andrea Vedaldi

# Translation-equivariance and CNNs

### Convolutional Neural Networks (CNN) are ubiquitous in Computer Vision

• The first stage in most image recognition pipelines is a CNN.





# Translation-equivariance and CNNs

### Convolutional Neural Networks (CNN) are ubiquitous in Computer Vision

- A large part of its success is due to **translation-equivariance**.
- Translating the input image also translates the predictions.



Translation by t  $f(\tau_t(x)) = \tau_t(f(x))$ CNN Input



# Translation-equivariance and CNNs

### Why translation-equivariance?

• Vastly **fewer parameters** to learn in linear layers.

For example, ResNet's 1<sup>st</sup> layer:

- 9,408 convolutional parameters.
- $\sim 1.2 \times 10^{11}$  if simple linear layer (FC)!
- Less computation (limited filter support).
- Local memory access (faster).
- Reflects statistics of natural images.





# -equivariance and CNNs?



Image statistics are largely invariant to other transformations (scale, rotation, etc).

 $\Rightarrow$  Can we get the same benefits in those cases?



### $\longrightarrow$ Input translation

# Problems:

- Spatially-varying filter, requires computing transformation at every step.
- Loses access to modern fast convolution algorithms (Winograd, FFT).



### Inspiration: Log-Polar Transform





 $\leftarrow r$ 

- A well-known trick from signal processing.
- Remaps (warps) space according to:

 $(u, v) \mapsto (r, \theta)$  $r = \log \sqrt{u^2 + v^2}$  $\theta = \tan^{-1} \left(\frac{v}{u}\right)$ 



### Inspiration: Log-Polar Transform





 $\leftarrow r$ 

- A well-known trick from signal processing.
- Remaps (warps) space according to:

 $(u, v) \mapsto (r, \theta)$  $r = \log \sqrt{u^2 + v^2}$  $\theta = \tan^{-1} \left(\frac{v}{u}\right)$ 



### Inspiration: Log-Polar Transform





- A well-known trick from signal processing.
- Remaps (warps) space according to:

 $(u, v) \mapsto (r, \theta)$  $r = \log \sqrt{u^2 + v^2}$  $\theta = \tan^{-1} \left(\frac{v}{u}\right)$ 



### Inspiration: Log-Polar Transform





- A well-known trick from signal processing.
- Remaps (warps) space according to:

 $(u, v) \mapsto (r, \theta)$  $r = \log \sqrt{u^2 + v^2}$  $\theta = \tan^{-1} \left(\frac{v}{u}\right)$ 



### Inspiration: Log-Polar Transform





- A well-known trick from signal processing.
- Remaps (warps) space according to:

 $(u, v) \mapsto (r, \theta)$  $r = \log \sqrt{u^2 + v^2}$  $\theta = \tan^{-1} \left(\frac{v}{u}\right)$ 



### Inspiration: Log-Polar Transform





- A well-known trick from signal processing.
- Remaps (warps) space according to:

 $(u, v) \mapsto (r, \theta)$  $r = \log \sqrt{u^2 + v^2}$  $\theta = \tan^{-1} \left(\frac{v}{u}\right)$ 



### Inspiration: Log-Polar Transform





- A well-known trick from signal processing.
- Remaps (warps) space according to:

 $(u, v) \mapsto (r, \theta)$  $r = \log \sqrt{u^2 + v^2}$  $\theta = \tan^{-1} \left(\frac{v}{u}\right)$ 



### Inspiration: Log-Polar Transform





- A well-known trick from signal processing.
- Remaps (warps) space according to:

 $(u, v) \mapsto (r, \theta)$  $r = \log \sqrt{u^2 + v^2}$  $\theta = \tan^{-1} \left(\frac{v}{u}\right)$ 



### Inspiration: Log-Polar Transform





- A well-known trick from signal processing.
- Remaps (warps) space according to:

 $(u, v) \mapsto (r, \theta)$  $r = \log \sqrt{u^2 + v^2}$  $\theta = \tan^{-1} \left(\frac{v}{u}\right)$ 



### Inspiration: Log-Polar Transform





- A well-known trick from signal processing.
- Remaps (warps) space according to:

 $(u, v) \mapsto (r, \theta)$  $r = \log \sqrt{u^2 + v^2}$  $\theta = \tan^{-1} \left(\frac{v}{u}\right)$ 



### Inspiration: Log-Polar Transform





- A well-known trick from signal processing.
- Remaps (warps) space according to:

 $(u, v) \mapsto (r, \theta)$  $r = \log \sqrt{u^2 + v^2}$  $\theta = \tan^{-1} \left(\frac{v}{u}\right)$ 



### Inspiration: Log-Polar Transform





Scale/rotation in the original space (u, v)

 $\Leftrightarrow$ 

Horizontal/vertical translation in the warped space  $(r, \theta)$ 

A CNN in this warped space will implicitly work with scales/rotations.

# Generalizing



### Observation



The log-polar interpolation (warp) grid can be generated as follows:

- Take an arbitrary **pivot point**  $x_0$ .
- Consider an elementary scale  $\delta_{\rm S}$ and an elementary rotation  $\delta_{\rm R}$ (w.r.t. the origin •).
- Repeatedly apply elementary scales/rotations to  $x_0$  to obtain the grid points.

(*n* scales, *m* rotations  $\rightarrow n \times m$  grid)

### 19

### $\Rightarrow$ Does this process generalize to other transformations?



Generalizing

• Answer: Yes! (Proof in the paper.)

### Requirements:

- 2D parameter-space (e.g. scale + rotation).
- Transformation group G must be Abelian (i.e., composition of transformations does not depend on their order, gh = hg, for g, h ∈ G).





# Transformation examples

- We can create *analogues* of the log-• polar warp for many other spatial transformations.
- They guarantee equivariance to ۲ aspect ratio, smooth deformations, and some 3D operations.

Warped image

Transformed

image

# Warp grid





Scale / rotation

# Transformation examples

- We can create *analogues* of the log-polar warp for many other spatial transformations.
- They guarantee equivariance to aspect ratio, smooth deformations, and some 3D operations.

Warped image





# Transformation examples

- We can create *analogues* of the log-polar warp for many other spatial transformations.
- They guarantee equivariance to aspect ratio, smooth deformations, and some 3D operations.

Warped image





UNIVERSITY OF OXFORD







22

# Transformation-equivariant CNNs

A recipe for transformation-equivariant CNNs

- 1. (Offline.) Generate warp grid from elementary transformations.
- 2. Apply warp to input (bilinear interpolation).
- 3. Apply standard convolutional operators.

The result can be shown to be equivariant to the chosen transformation.





Warp



### Warped image x'



# Experiments



### **Google Earth dataset** Vehicle pose estimation

(Scale/rotation equivariance)

|                         | ROT. ERR. | SCALE ERR. |
|-------------------------|-----------|------------|
| CNN+FC                  | 22.54     | 5.04       |
| CNN+SOFTARGMAX          | 9.36      | 4.87       |
| WARPED CNN              | 8.29      | 4.79       |
| (DIELEMAN ET AL., 2015) | 31.11     | 4.29       |



### **AFLW dataset** Head pose estimation

### (3D rotation equivariance)

|                              | YAW ERR. | PITCH ERR. |
|------------------------------|----------|------------|
| CNN+FC                       | 12.56    | 6.59       |
| STN (Jaderberg et al., 2015) | 13.65    | 7.22       |
| Warped CNN                   | 7.07     | 5.28       |



25

# Conclusions

- Convolutional operators can be generalized to a broad class of spatial transformations.
- We present a construction based on a single warp (negligible overhead) and standard convolutions.
- This allows us to train fast CNNs that are equivariant to other useful transformations.
- *Future work*: mixing filter banks of different transformations inside a CNN.





