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Motivation

• Setting: object detection

• Scan image with learned template of 
dense features (e.g., HOG, SIFT, CNN…)

• Core component of many approaches
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Motivation

1.Train initial model (e.g., SVM) with
1.All positive samples (not shown)
2.Random negative samples

2.Scan negative images for false-positives

3.Re-train using false-positives as 
additional samples

(Repeat)

Several rounds are needed.
Each round is very expensive.

High performance usually requires
Hard Negative Mining.
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Motivation

• Consider the full set of all potential 
samples.

• Hard Negative Mining avoids working on 
the full set by growing an active set of 
mined samples.



Motivation

Observation:

• Negative sets are highly redundant

• Pixels of overlapping windows are 
constrained to be the same

Questions:

• How does this influence a learning problem?

• Can we get rid of redundancies?



“Bold idea”

Let’s try to train with the full negative set.

Method:

• Collect base samples in a coarse grid.

• Train with the finer translations implicitly
by using a Circulant Decomposition.
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� represents a cyclic shift.
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• We need a model of image translations.

• Idea: Apply permutation matrix �
to base sample �:

� �

• Powers of � shift by different 
amounts:
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• Represents a collection of fine 
translations of �.

(Easy to generalize to 
horizontal + vertical)
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Cyclic shifts

shifts of base sample �� shifts of base sample �� shifts of base sample ��

• Goal: implicitly train with all shifts of all base samples.

• To see how shifted samples interact, 
analyze the Gram matrix:

(Dot-products between pairs of samples)

��� � �� , ��



Gram matrix

1

2

3

1 2 3

0

0

Shift

Base 
sample

Dataset

�

dot-product



Gram matrix

1

2

3

1

2

3

1

1 2 3 1 2 3

0

0

1Shift

Base 
sample

Dataset

�

dot-product



Gram matrix

1

2

3

1

2

3

1

1 2 3 1 2 3

0

1

2

3

1 2 3

0

2

1 2Shift

Base 
sample

Dataset

�
dot-product



Gram matrix

• Property #1:

� is block-circulant

⇒ Only 1 row of blocks is unique.
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Gram matrix

• Property #1:

� is block-circulant

• Property #2:

Unique blocks contain the
cross-correlation between
all pairs of samples.

⇒ Becomes simple product
in the Fourier domain.

⇒ Only 1 row of blocks is unique.
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Block-diagonalization

�

Proposed approach:

• Fourier Transform the samples 
(+ a small permutation)

Fourier 
Transform

Projection on Fourier Basis

with different frequencies.

⇔



Block-diagonalization

• Each block of � contains the projection
on a different basis, or Fourier frequency.

(# of frequencies  =  # of spatial cells of the samples)

1st frequency

2nd frequency

3rd frequency

Fourier 
Transform

�



Block-diagonalization

We prove all off-diagonal blocks are zero.

1st frequency

2nd frequency

3rd frequency

Fourier 
Transform

99.5% for 18x10 
HOG template

Frequencies correspond to 
independent learning problems.

⇓
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Circulant Decomposition

⋮

Base samples

Fourier 
Transform

SVR

Inv. Fourier 
Transform

SVR

SVR

(Negative and 
positive)

Template 
weights

1st frequency

2nd frequency

 th frequency

Split data by 
Fourier frequency

Concatenate trained weights 
from all Fourier frequencies

Feature 
extraction



Circulant Decomposition

• Equivalent to training with
all shifts of the base samples.

• Surprisingly, easier than without shifts:

• No shifts: one large SVR.
• With shifts: many small SVR’s.

Circulant 
Decomposition
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Circulant Decomposition

• Closed-form

• Sub-problems:

• Can be solved in parallel

• Use off-the-shelf SVR solvers

• 12 lines of MATLAB code

Circulant 
Decomposition

⋮

Fourier 
Transform

SVR

Inv. Fourier 
Transform

SVR

SVR

Feature 
extraction
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Experiments

ETHZ Shapes

Single-template HOG object detection:



Conclusions

• Hard negative mining can be replaced with non-iterative training.

• There is a rich intrinsic structure in the problem.

• Theoretic development:

• Link between general learning algorithms and
specialized Fourier signal processing.

• Circulant Decomposition:

• Closed-form

• Parallel, small sub-problems

• Off-the-shelf SVR solvers

• 12 lines of MATLAB code

• ~14x speed-up

• Same/better 
performance

⇒


