Beyond Hard Negative Mining:

Efficient Detector Learning via Block-Circulant Decomposition

J.F. Henriques, J. Carreira, R. Caseiro, J. Batista

Institute of Systems and Robotics University of Coimbra

- Setting: object detection
- Scan image with **learned template** of dense features (e.g., HOG, SIFT, CNN...)
- Core component of many approaches

High performance usually requires **Hard Negative Mining.**

High performance usually requires **Hard Negative Mining.**

Train initial model (e.g., SVM) with
 All positive samples (not shown)
 Random negative samples

High performance usually requires **Hard Negative Mining.**

- Train initial model (e.g., SVM) with
 All positive samples (not shown)
 Random negative samples
- 2. Scan negative images for false-positives
- 3. Re-train using false-positives as additional samples

High performance usually requires **Hard Negative Mining.**

- Train initial model (e.g., SVM) with
 All positive samples (not shown)
 Random negative samples
- → 2. Scan negative images for false-positives
 - 3. Re-train using false-positives as additional samples

- (Repeat)

Several rounds are needed. Each round is **very expensive**.

Consider the full set of all potential samples.

 Hard Negative Mining avoids working on the full set by growing an active set of mined samples.

Observation:

- Negative sets are **highly redundant**
- Pixels of **overlapping** windows are constrained to be the same

Questions:

- How does this influence a learning problem?
- Can we get rid of redundancies?

Let's try to train with the full negative set.

Method:

- Collect base samples in a coarse grid.
- Train with the finer translations **implicitly** by using a **Circulant Decomposition**.

Cyclic shifts

- We need a model of image translations.
- Idea: Apply permutation matrix P to base sample x:

P represents a **cyclic shift**.

Cyclic shifts

- We need a model of image translations.
- Idea: Apply permutation matrix P to base sample x:

P represents a **cyclic shift**.

Cyclic shifts

- We need a model of image translations.
- Idea: Apply permutation matrix P to base sample x:

• Powers of *P* shift by different amounts:

$$P^{u}\mathbf{x}, \ u \in \left\{-\frac{\text{height}}{2}, \cdots, +\frac{\text{height}}{2}\right\}$$

• Represents a collection of fine translations of **x**.

P represents a cyclic shift.

(Easy to generalize to horizontal + vertical)

• To see how shifted samples interact, analyze the **Gram matrix**:

$$G_{ij} = \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

(Dot-products between **pairs** of samples)

Dataset

G

Dataset

Shift			0		1			2		
	Base sample	1	2	3	1	2	3	1	2	3
	1									
0	2									
	3									
1	1									
	2									
	3									
	1									
2	2									
_	3									
						\mathbf{C}	,			
			G							
dot-product										

Shift		0		1			2			
	Base sample	1	2	3	1	2	3	1	2	3
	1									
0	2		Α			В			C	
	3									
	1									
1	2		C			A			В	
	3									
-	1									
2	2		В			С			Α	
	3									

G

• Property #1:

G is **block-circulant**

$$\Rightarrow$$
 Only 1 row of blocks is unique.

Shift		0			1			2		
	Base sample	1	2	3	1	2	3	1	2	3
	1									
0	2		Α			В			С	
	3									
	1									
1	2		C			A			В	
	3									
	1									
2	2		В			C			A	
	3									
						G	r			

• Property #1:

G is **block-circulant**

$$\Rightarrow$$
 Only 1 row of blocks is unique.

• Property #2:

Unique blocks contain the **cross-correlation** between all pairs of samples.

⇒ Becomes simple product in the Fourier domain.

Block-diagonalization

Proposed approach:

• Fourier Transform the samples (+ a small permutation)

\Leftrightarrow

Projection on **Fourier Basis** with different frequencies.

• **Each block** of *G* contains the projection on a different basis, or **Fourier frequency**.

(# of frequencies = # of spatial cells of the samples)

Circulant Decomposition

- Equivalent to training with **all shifts** of the base samples.
- Surprisingly, *easier* than without shifts:
 - No shifts: one large SVR.
 - With shifts: many small SVR's.

Circulant Decomposition

- Closed-form
- Sub-problems:
 - Can be solved in parallel
 - Use off-the-shelf SVR solvers
- 12 lines of MATLAB code

INRIA Pedestrians

- 1218 negative images
- $\sim 10^8$ potential samples

Caltech Pedestrians

0.7

0.8

- 4250 negative images
- $\sim 10^8$ potential samples

INRIA Pedestrians

- 1218 negative images
- $\sim 10^8$ potential samples

Caltech Pedestrians

- 4250 negative images
- $\sim 10^8$ potential samples

INRIA Pedestrians

- 1218 negative images
- $\sim 10^8$ potential samples

Caltech Pedestrians

0.6

0.7

0.8

- 4250 negative images
- $\sim 10^8$ potential samples

			Circulant			
Rounds		0	1	1 2		0
Time (s)	RIA	7	159	312	463	35
AP	IN	0.749	0.785	0.794	0.796	0.805
Time (s)	ltech	12	646	1272	1901	139
AP	Cal	0.165	0.268	0.365	0.368	0.380

 \sim 14x speed-up

			Circulant			
Rounds		0	1	2	3	0
Time (s)	RIA	7	159	312	463	35
AP	I	0.749	0.785	0.794	0.796	0.805
Time (s)	tech	12	646	1272	1901	139
AP	Cal	0.165	0.268	0.365	0.368	0.380

 \sim 14x speed-up

Experiments

Single-template HOG object detection:

ETHZ Shapes

Conclusions

- Hard negative mining can be replaced with **non-iterative** training.
- There is a **rich intrinsic structure** in the problem.
 - Circulant Decomposition:
 - Closed-form
 - Parallel, small sub-problems
 - Off-the-shelf SVR solvers
 - 12 lines of MATLAB code

→ -14x speed-up
 Same/better performance

- Theoretic development:
 - Link between general **learning algorithms** and specialized Fourier **signal processing**.