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- Setting: object detection

» Scan image with learned template of
dense features (e.g., HOG, SIFT, CNN...)

« Core component of many approaches



High performance usually requires
Hard Negative Mining.




High performance usually requires
Hard Negative Mining.

1 Train initial model (e.g., SVM) with
L. All positive samples (not shown)
2.




High performance usually requires
Hard Negative Mining.

1 Train initial model (e.g., SVM) with
L. All positive samples (not shown)
2.

2. Scan negative images for false-positives

3. Re-train using false-positives as
additional samples




High performance usually requires
Hard Negative Mining.

1 Train initial model (e.g., SVM) with
L. All positive samples (not shown)
2.

—> 2 Scan negative images for false-positives

3. Re-train using false-positives as
additional samples

— (Repeat)

Several rounds are needed. .
Each round is very expensive. .
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- Consider the full set of all potential
samples.

» Hard Negative Mining avoids working on
the full set by growing an active set of

mined samples.




Observation:
- Negative sets are highly redundant

+ Pixels of overlapping windows are
constrained to be the same

Questions:

» How does this influence a learning problem?

- Can we get rid of redundancies?




Let’s try to train with the full negative set.

Method:
» Collect base samples in a coarse grid.

« Train with the finer translations implicitly
by using a Circulant Decomposition.




We need a model of image translations.

|dea: Apply permutation matrix P
to base sample x:

P represents a cyclic shift.
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P represents a cyclic shift.



We need a model of image translations.

Idea: Apply perm.utatlon matrix P Powers of P shift by different
to base sample x: amone
A g PuX, U € {_ heizght’ o heizght}

Represents a collection of fine
translations of x.

(Easy to generalize to

P represents a cyclic shift. horizontal + vertical)
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« Goal: implicitly train with all shifts of all base samples.

shifts of base sample x4 shifts of base sample x, shifts of base sample x3
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« Goal: implicitly train with all shifts of all base samples.

shifts of base sample x4 shifts of base sample x, shifts of base sample x3
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» To see how shifted samples interact,
analyze the Gram matrix:

(Dot-products between pairs of samples)



Gram matEnx
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« Property #1:

G is block-circulant

Shift 0 1 2 = Only 1 row of blocks is unique.
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Dataset - Pro .
4 al perty #1.
} ‘-“ 5
G is block-circulant
\.hﬁi .
it 0 1 2 = Only 1 row of blocks is unique.
s : 12312
sample
1 * Property #2:
0 2
i Unique blocks contain the
1 ) cross-correlation between
3 all pairs of samples.
1
2 2 :
- = Becomes simple product

in the Fourier domain.
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Fourier

-
Transform

Proposed approach:

Fourier Transform the samples
(+ a small permutation)

=

Projection on Fourier Basis
with different frequencies.

| NN
" - s

.v

- = R -

;
.
1

AR

A
- .



A
e b DA LN\ Aot o Do Dot M bt b At L L ! Nt Dt bl Do bl L

15t frequency
S Fourier — . 2nd frequency
Transform —

. 31 frequency -

Each block of G contains the projection
on a different basis, or Fourier frequency.

(# of frequencies = # of spatial cells of the samples)
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15t frequency
S Fourier — . 2nd frequency
Transform —

. 31 frequency -

99.5% for 18x10

We prove all off-diagonal blocks are zero. HOG tempaE

U

Frequencies correspond to
independent learning problems.



[ -t ) — - ™ ) ™~ - ™ ™ ~ - S -~ —
@ — S
N JUIL P A U LU 0 AN N A AU U U AN A AU U AL

15t frequency

SVR

Template
weights

Base samples

2nd frequency

SVR

/

7 N

Feature Fourier Inv. Fourier N
extraction Transform Transform
) sth frequenc
(Negative and d Y
positive) SVR
Split data by Concatenate trained weights

Fourier frequency from all Fourier frequencies
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SVR

SVR

Feature Fourier Inv. Fourier
extraction Transform Transform

SVR

Equivalent to training with
all shifts of the base samples.

Circulant
Decomposition Surprisingly, easier than without shifts:

No shifts: one large SVR.
With shifts: many small SVR's.
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SVR
a
W Feature Fourier Inv. Fourier
o 2 extraction Transform Transform
SVR

Closed-form

Sub-problems:
Circulant

Decomposition Can be solved in parallel
Use off-the-shelf SVR solvers

12 lines of MATLAB code
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Single-template HOG object detection:
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Single-template HOG object detection:
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Single-template HOG object detection:
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Single-template HOG object detection:

Mining Circulant
Rounds 0 1 2 3 0
Tme |« 57 | 150 | 312 | 463 35
(s) ~
AP | & 0749] 0.785] 0.794] 0.796| 0.805
Time | =1 15 | 646 | 1272 | 1901 139
(S) 8
AP | 8| 0.165] 0.268] 0.365] 0.368 | 0.380

~14x speed-up



=

™ -~
A A U U U U 4

N

Single-template HOG object detection:

Mining Circulant
Rounds 0 1 2 3 0
Tme <l 7 | 150 | 312 | 463 35
(s) ~
AP | & 0749] 0.785] 0.794| 0.796| 0.805
Time | = 15 | 646 | 1272 | 1901 139
(s) 8
AP | 8| 0.165] 0.268[ 0.365] 0.368 | 0.380

~14x speed-up
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Single-template HOG object detection:
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Hard negative mining can be replaced with non-iterative training.

There is a rich intrinsic structure in the problem.

Circulant Decomposition:

Closed-form -

~14x speed-up
Parallel, small sub-problems = 4 . Same/better
Off-the-shelf SVR solvers performance

12 lines of MATLAB code

Theoretic development:

Link between general learning algorithms and
specialized Fourier signal processing.



