
Small Steps and Giant Leaps: 
Minimal Newton Solvers for 

Deep Learning

João F. Henriques Sebastien Ehrhardt       
Samuel Albanie              Andrea Vedaldi

Visual Geometry Group



2Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

The state of deep learning

• Deep learning is everywhere.

• As a point of comparison, AlexNet (Krizhevsky et al.) 
arguably brought deep learning to “mainstream”

computer vision in 2012.

• AlexNet was trained with Stochastic Gradient Descent 
(SGD).

• Almost a decade later, we’re still using SGD
(and other first-order variants)!



3Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

The problem

• First-order solvers (SGD, Adam, etc) 
are slow to converge even on simple 
problems.

⇒ Main cause: poor scaling 
of objective function.

Starting point

Solution

Gradient descent with optimal learning
rate on a 2D quadratic loss surface

Gradient 
direction



4Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

The problem

Starting point

Solution

Gradient descent with optimal learning
rate on a 2D quadratic loss surface

Gradient 
direction

More problems:

• Still happens if each parameter is scaled 
independently (e.g. AdaGrad/Adam/etc, 
batch/layer normalization).

• Due to nonlinearity of deep nets, the 
optimal scaling will change as the 
parameters change.



5Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

The classical solution

• Use a 2nd-order solver (Newton method):

𝑧 = −෡𝐻−1𝐽
↑

The scaling (Hessian/2nd order gradient)

The step → ← The gradient

Incompatible with deep learning:

• Hessian matrix size quadratic
in #parameters (e.g. terabytes).

• Costly to invert even if small.



6Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

The modern approach

← Iteratively solve 𝑧 = −෡𝐻−1𝐽
by Conjugate Gradient (CG)
(compute Newton step)

←Apply step to parameters

• Hessian-free methods use automatic differentiation (e.g. PyTorch) 
to multiply vectors with the Hessian without storing it.

• These Hessian-vector products can cost only ≃ 2 back-propagations.



7Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

Problems with the modern approach

Hessian-free methods:

• Still dozens of times more costly than 
gradient methods (due to inner loop).

• Must fix and run CG over a single batch 
because it is unstable under noise.



8Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

The even more modern approach (ours)

• We need an alternative to Conjugate-Gradient (CG) for matrix inversion.

• So we can replace CG with gradient descent, using the gradient (over 𝑧): 

• Notice this inversion can be written as a minimization:

← (Newton step, costly to compute explicitly)



9Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

The even more modern approach (ours)

←Warm-start from prev. iteration
←Only do 1 iteration of inner loop
←Replace CG with gradient descent

(robust to warm-starts and noise)

• Proposed changes to Hessian-free method:



10Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

←Gradient for 𝑧 = − ෡𝐻−1𝐽

←Gradient descent over 𝑧

The result – CurveBall



11Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

The result – CurveBall

Main characteristics:

• Cost of inverting the Hessian is 
amortized over time.

• The buffer adapts over time to 
approximate z ≃ − ෡𝐻−1𝐽.

⇒ Approximates the Newton step!



12Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

The result – CurveBall

More :

• Size of is 𝒪(𝑝) (a momentum buffer) 
instead of 𝒪(𝑝2) (approximate Hessian).

• The implicit Hessian is averaged over 
many batches of data, as opposed to 
computing a Hessian for a single batch 
(which would be noisy).



13Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

The result – CurveBall

Advantages:

• Very fast (cost of ෡𝐻𝑣 ≃ 2 back-props).

• Easy to implement.

• Can get hyper-parameters (𝜌, 𝛽) 
automatically.

⇓

No hyper-
parameter tuning!



14Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

The result – CurveBall

Comparison to SGD:

• Reduces exactly to Momentum SGD,
if we eliminate the Hessian term.

• Momentum SGD is also known as the 
Heavy-Ball Method.

• Since we add a curvature (Hessian) term 
to it, we named our method CurveBall.



15Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

How to break your optimiser



16Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

How to break your optimiser



17Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

Experiments with standard CNNs

Better convergence 
with the same 

hyper-parameters 
across all datasets!



18Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

Experiments on 50 random architectures

• Architectures that didn’t work with SGD 
were discarded early.

⇒ So standard deep networks are biased
to favour 1st-order methods.

• True test of generalization across 
networks: random architectures.



19Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

Training vs. validation performance

Train./val. error



20Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

Conclusions

• We propose a practical 2nd-order 
solver, CurveBall, specifically 
tailored for deep learning.

• Converges to Newton solver in the 
limit, which is optimal but expensive.

• Applicable to large-scale settings
(e.g. ImageNet, ResNets).

• Automatic hyper-parameter tuning 
with closed-form solutions.

Project page with code:
www.robots.ox.ac.uk/~joao/curveball

http://www.robots.ox.ac.uk/~joao/mapnet
http://www.robots.ox.ac.uk/~joao/curveball

