Small Steps and Giant Leaps:
Minimal Newton Solvers for
Deep Learning




The state of deep learning

OXFORD

Deep learning is everywhere.

As a point of comparison, AlexNet (Krizhevsky et al.)
arguably brought deep learning to “mainstream”
computer visionin 2012.

AlexNet was trained with Stochastic Gradient Descent
(SGD).

Almost a decade later, we're still using SGD
(and other first-order variants)!

cross, cross,
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The problem

OXFORD

Gradient descent with optimal learning
rate on a 2D quadratic loss surface

 First-order solvers (SGD, Adam, etc)
are slow to converge even on simple

problems.
Gradient
. . direction
Main cause: poor scaling
: L] L] L]
of objective function. W

Starting point

Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019



The problem
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Gradient descent with optimal learning

rate on a 2D quadratic loss surface
More problems:

« Still happens if each parameter is scaled
independently (e.g. AdaGrad/Adam/etc,
batch/layer normalization). Gradient

» Due to nonlinearity of deep nets, the dirgction
optimal scaling will change as the W
t h : : .
parameters change Starting point
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The classical solution
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« Use a 2nd-order solver (Newton method):

l Incompatible with deep learning:

_ _ -1 - . . :
Thestep— [Z = —H " "J < The gradient | » Hessian matrix size quadratic

in #parameters (e.g. terabytes).

_* Costly toinvert even if small.
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The modern approach
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« Hessian-free methods use automatic differentiation (e.g. PyTorch)
to multiply vectors with the Hessian without storing it.

* These Hessian-vector products can cost only = 2 back-propagations.

Algorithm 2. Simplified Hessian-free method.
fort=0,..., T —1do

1:

2 zo = —J(wy) « Iteratively solve z = —H~1J
3 forr =0,....R—1 (Aor convergence) do by Conjugate Gradient (CG)
4 Zrt1 = CGlzr, H(we)ar, J(we)) (compute Newton step)

5 end for

6 Wiy1 = Wi + 2R « Apply step to parameters
7: end for
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Problems with the modern approach
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Algorithm 2. Simplified Hessian-free method. H essian -free m et h Od S.

1: fort =0,....,T —1do

2 2= —J(w) » Still dozens of times more costly than
3: forr=0,....R—1 (Aor convergence) do .

s 2rir = QG (20, H(wy)z, J(w;)) gradient methods (due to ).

5 end for

6: w =w;+ 2 R .

7 endfor « Must fix and run CG over a single batch

because it is unstable under noise.
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The even more modern approach (ours)
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« We need an alternative to Conjugate-Gradient (CG) for matrix inversion.

2z =— H~1J < (Newton step, costly to compute explicitly)

e Notice this inversion can be written as a minimization:

z=argmin sz Hz' + 2" J
zf

« So we can replace CG with gradient descent, using the gradient (over z):

Az:ﬁerJ
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The even more modern approach (ours) ol
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* Proposed changes to Hessian-free method:

Algorithm 2. Simplified Hessian-free method.

1: fort=0,..., 7 —1do
9. o Tl o
~) o \Wtj . . .
3. — < Only do 1 iteration of inner loop
4: 2rg1 = CG (2, H(wy) 2z, J(wy)) « Replace CG with gradient descent
5. -endfer (robust to warm-starts and noise)
6 Wiy1 = Wt + 2R
7: end for
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The result — CurveBall
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Algorithm 1. CURVEBALL (proposed).

1: 20=20

2: fort =0,....,T —1do

3 A, = H(wy)z + J(wy) < Gradientforz = —H71J
4: ziy1 = pzy — BA, « Gradient descent over z
5 W1 = Wt + 241

6: end for
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The result — CurveBall
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Main characteristics:

Algorithm 1. CURVEBALL (proposed). « Cost of inverting the Hessian is
;; fjjl. ; 2 0...T —1do amortized over time.
3 A, = H(wy)ze + J(wy) .
4zl = pz — BA, * The buffer z adapts over time to
55 Wil = We F Zp approximatez ~ —H™1J.
6: end for

= Approximates the Newton step!
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The result — CurveBall
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More :
Algorithm 1. CURVEBALL (proposed). * Size of 7 is O(p) (a momentum buffer)

l: 20=0 instead of O (p?) (approximate Hessian).
2. fort=0,...,7—1do
i A = H(wt)"gz J(we) » Theimplicit Hessian is averaged over

: Zt4+1 — PRt — z
S Wear = W + Zees many b:fltches of c!ata, as opposed to
6: end for computing a Hessian for a single batch

(which would be noisy).
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The result — CurveBall
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Advantages:

« Very fast (cost of Hv =~ 2 back-props).

Algorithm 1. CURVEBALL (proposed). . Easy to implement

1: z0=20
2: fort =0,....7 —1do
3 A, = H(w)z + J(w)  Can get hyper-parameters (p, )
4 2441 = pz — BA, automatically.
5: Wiyl = Wy + 2441
6: end for U
No hyper-
parameter tuning!
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The result — CurveBall .
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Comparison to SGD:
Algorithm 1. CURVEBALL (proposed). e Reduces exactly to Momentum SG D’
1: z0 =20 . o e
2 fort = 0,..,T — 1 do if we eliminate the
3: A, = Hbawpdsy + J(w .
. — e BA we) « Momentum SGD is also known as the
4: Zt4+1 Pzt 5 z
5. Wpp1 = Wy + Ze1 Heavy-Ball Method.
6: end for

» Since we add a curvature (Hessian) term
to it, we named our method CurveBall.
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How to break your optimiser

UNIVERSITY OF

OXFORD

) Rosenbrock-/[0, 1] Rosenbrock-14[0, 1]
L )’ B B0 N ! ‘.fv“
:; [ O Minimum 2% R
¥ SGD ,-' S
[ = Adam %
1 H e LM ' 100 |
|wemeee BFGS !
i—o—- CurveBall |
0.5 w
». 72
=2 C
=
} 107
0 ,
i .
0.5 [{
B By 3 10-10 L 1 | I 1 |
-0.5 0 0.5 0 10 20 30 40 50
u Num. Iterations

Henrigues, Ehrharc hanie ¢ aldi, Small steps and giant leaps, ICCV 2019




How to break your optimiser
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Experiments with standard CNNs

CIFAR-10, ResNet-18

CurveBall (ours)
SGD

60

CIFAR-10, basic

CNN
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SGD

CIFAR-10, basic CNN + batch-norm
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Better convergence
with the same
hyper-parameters
across all datasets!




Experiments on 50 random architectures

UNIVERSITY OF

0),4:(0)24D)
1r
——— CurveBall
) o . 0.8 —— Adam-0.001
* Architectures that didn’t work with SGD ' Adam-0.0001
were discarded early. . ——SGD-0.01
x 0.6 —— SGD-0.001
. - D-0.0001
= So standard deep networks are biased 3 SGD-0.000
to favour 1st-order methods. o 04
» True test of generalization across 0.2}
networks: random architectures.
0 1 l |
0 5 10 15 20

Epochs
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Training vs. validation performance i
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Model Basic Basic + BN ResNet-18 VGG-f

CURVEBALL A 14.1/199 7.6/16.3 0.7/15.3(13.5) 10.3/33.5

CURVEBALL 15.3/19.3 9.4/15.8 1.3/16.1 12.7/33.8
SGD 18.9/21.1 10.0/16.1 2.1/12.8 19.2/39.8
Adam 15.7/19.7 9.6/16.1 1.4/14.0 13.2/35.9

Train./val. error
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Conclusions

«  We propose a practical 2"-order
solver, CurveBall, specifically
tailored for deep learning.

« Converges to Newton solver in the
limit, which is optimal but expensive.

* Applicable to large-scale settings
(e.g. ImageNet, ResNets).

« Automatic hyper-parameter tuning
with closed-form solutions.
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Project page with code:
www. robots.ox.ac.uk/~joao/curveball
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http://www.robots.ox.ac.uk/~joao/mapnet
http://www.robots.ox.ac.uk/~joao/curveball

