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The state of deep learning

• Deep learning is everywhere.

• As a point of comparison, AlexNet (Krizhevsky et al.) 
arguably brought deep learning to “mainstream”

computer vision in 2012.

• AlexNet was trained with Stochastic Gradient Descent 
(SGD).

• Almost a decade later, we’re still using SGD
(and other first-order variants)!
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The problem

• First-order solvers (SGD, Adam, etc) 
are slow to converge even on simple 
problems.

⇒ Main cause: poor scaling 
of objective function.

Starting point

Solution

Gradient descent with optimal learning
rate on a 2D quadratic loss surface

Gradient 
direction
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The problem

Starting point

Solution

Gradient descent with optimal learning
rate on a 2D quadratic loss surface

Gradient 
direction

More problems:

• Still happens if each parameter is scaled 
independently (e.g. AdaGrad/Adam/etc, 
batch/layer normalization).

• Due to nonlinearity of deep nets, the 
optimal scaling will change as the 
parameters change.
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The classical solution

• Use a 2nd-order solver (Newton method):

𝑧 = −෡𝐻−1𝐽
↑

The scaling (Hessian/2nd order gradient)

The step → ← The gradient

Incompatible with deep learning:

• Hessian matrix size quadratic
in #parameters (e.g. terabytes).

• Costly to invert even if small.
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The modern approach

← Iteratively solve 𝑧 = −෡𝐻−1𝐽
by Conjugate Gradient (CG)
(compute Newton step)

←Apply step to parameters

• Hessian-free methods use automatic differentiation (e.g. PyTorch) 
to multiply vectors with the Hessian without storing it.

• These Hessian-vector products can cost only ≃ 2 back-propagations.



7Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

Problems with the modern approach

Hessian-free methods:

• Still dozens of times more costly than 
gradient methods (due to inner loop).

• Must fix and run CG over a single batch 
because it is unstable under noise.
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The even more modern approach (ours)

• We need an alternative to Conjugate-Gradient (CG) for matrix inversion.

• So we can replace CG with gradient descent, using the gradient (over 𝑧): 

• Notice this inversion can be written as a minimization:

← (Newton step, costly to compute explicitly)
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The even more modern approach (ours)

←Warm-start from prev. iteration
←Only do 1 iteration of inner loop
←Replace CG with gradient descent

(robust to warm-starts and noise)

• Proposed changes to Hessian-free method:
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←Gradient for 𝑧 = − ෡𝐻−1𝐽

←Gradient descent over 𝑧

The result – CurveBall



11Henriques, Ehrhardt, Albanie and Vedaldi, Small steps and giant leaps, ICCV 2019

The result – CurveBall

Main characteristics:

• Cost of inverting the Hessian is 
amortized over time.

• The buffer adapts over time to 
approximate z ≃ − ෡𝐻−1𝐽.

⇒ Approximates the Newton step!
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The result – CurveBall

More :

• Size of is 𝒪(𝑝) (a momentum buffer) 
instead of 𝒪(𝑝2) (approximate Hessian).

• The implicit Hessian is averaged over 
many batches of data, as opposed to 
computing a Hessian for a single batch 
(which would be noisy).
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The result – CurveBall

Advantages:

• Very fast (cost of ෡𝐻𝑣 ≃ 2 back-props).

• Easy to implement.

• Can get hyper-parameters (𝜌, 𝛽) 
automatically.

⇓

No hyper-
parameter tuning!
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The result – CurveBall

Comparison to SGD:

• Reduces exactly to Momentum SGD,
if we eliminate the Hessian term.

• Momentum SGD is also known as the 
Heavy-Ball Method.

• Since we add a curvature (Hessian) term 
to it, we named our method CurveBall.
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How to break your optimiser
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How to break your optimiser
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Experiments with standard CNNs

Better convergence 
with the same 

hyper-parameters 
across all datasets!
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Experiments on 50 random architectures

• Architectures that didn’t work with SGD 
were discarded early.

⇒ So standard deep networks are biased
to favour 1st-order methods.

• True test of generalization across 
networks: random architectures.
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Training vs. validation performance

Train./val. error
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Conclusions

• We propose a practical 2nd-order 
solver, CurveBall, specifically 
tailored for deep learning.

• Converges to Newton solver in the 
limit, which is optimal but expensive.

• Applicable to large-scale settings
(e.g. ImageNet, ResNets).

• Automatic hyper-parameter tuning 
with closed-form solutions.

Project page with code:
www.robots.ox.ac.uk/~joao/curveball

http://www.robots.ox.ac.uk/~joao/mapnet
http://www.robots.ox.ac.uk/~joao/curveball

