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One-shot learning
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One-shot learning:
Learning a new concept from 1 or few samples.

Examples: Exemplar [a‘

» Specializing OCR to new J
writers or new alphabets. ?
L

. . . Test
* Single-object tracking. images
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G




Standard discriminative learning
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Starting point: Standard SGD/back-propagation learning

Test image z
Prediction y
(same/different)

Exemplar x Stochastic Gradient Descent /
[* —> Back-propagation
(minimize loss of exemplar)



Standard discriminative learning
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L — x>0 x>0 % —>

TW1 TWZ ng

Problems:
Stochastic Gradient Descent / » Scarce data/overfitting
[* —> Back-propagation  Lengthy optimization process
(minimize loss of exemplar) . No priors (“learning to learn”)



Parameter prediction
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Idea: Re-interpret “training” as “parameter prediction”

Test image z
-E ﬂ ﬂ Prediction y
(same/different)
W1 W» W3

Exemplar x

 Red: dynamic convolution
[> 0 > * |
e Green:standard convolution




Parameter prediction
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Idea: Re-interpret “training” as “parameter prediction”

Test image z
-E ﬂ ﬂ Prediction y
(same/different)
W1 W» W3

* The second network (learnet)
Exemplar x has meta-parameters w';.

[a~ » Represent prior knowledge about
how to “learn” (predict)

parameters, from one exemplar.
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Feed-forward one-shot learning: Fostimage 2
- Learns a classifier (predicts w; from x) t g Bl cmeitoeny
and evaluates it (on z) in one pass. e -3
. i [? > % > g > *
Because this is a standard computational
graph, it can be differentiated with back-prop. Iw'l waz

Training “meta-parameters” w';:
* Draw exemplar/test-image/label triplets (x, z, y).

« Back-propagate through graph, and update w'; with SGD.



Technical challenges
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Typical number of parameters: .
estimage z

» Fully-connected: 4096 x 4096 = 2 x 10’ I o
» Convolutional: 3 x 3 x 192 x 256 = 4 x 10° Wi

Exemplar x

Prediction y
(same/different)

W3

[? > % > 0 > *

The output-space for parameter prediction I I
can be very large. w'y w's

To predict this many outputs from a 4096-dim. vector:

 « Storageissues
4096 X 4 x 10° 5‘1 x 101% parameters (15.2 GB)\ > - L
* Overfitting




Factorization
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« We start with the fully-connected case (easier).
y=W(z)x + b(2)

* The number of dynamic weights W (z) scales
qguadratically with the size of x.

* |nspired by SVD, factorize:

y = M’diag(w(z))Mx b(z)




Factorization
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« We start with the fully-connected case (easier).
y=W(z)x + b(2)

* The number of dynamic weights W (z) scales
qguadratically with the size of x.

"« Learned offline and fixed.
* Inspired by SVD, factorize: 1 * Projection into space with
Il ¢ ~independent factors of variation.
y = M’diag(w(z))Mx b(z) _
»T\ * Predicted dynamically.

* Scales linearly with size of x.



Factorized convolution
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To be broadly useful, we need to generalize for convolutional layers.

Factorized convolution: w(z) ]
- 1 x 1 convolution (M) - i V> 4
* Diagonal convolution Nl // ﬂ
with w(z) J— / L
1 X 1convolution (M’) Y XYP: .

Diagonal convolution applies k independent filters to k input channels.

In the fully-connected case (1 X 1 output) reduces to diag(w(z)).



Siamese networks
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The proposed architecture is reminiscent of siamese networks.

Z—r* > (0 :* > O :* :F—by

Z—~>I<=CT=*;J;*> |
e e -~ 1T Yy
x—h* :O' :* :O' :)I( w * *

X— X~ 0 [~ X |~ O

siamese

f(z,x2) =T(o(x; W), p(z; W))

learnet
f(z, ) = T(p(z;w(z W), ¢(z; W))
Key differences:
* Siamese net applies same model with shared weights to x and z.
« The proposed “learnet” changes intermediate representations of another net (red).



Siamese networks
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YA :* > (T :* > (0 :*
Z—h* > O :* > (O ;* : L : il—\—*y
E ' I>F_}y X :* (T :* ~ 0 :)I(

x—h* > O :* > (O :)I( ;

Slamese > * > (0 > * > (0 » )I( w

siamese learnet

* To highlight that they are not mutually exclusive, a learnet can be
used to dynamically change the parameters of a siamese net.



Experiments
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Omniglot dataset

« 30 training alphabets, 20 testing alphabets.
 Resized to 28x28 pixels.

same alphabet (chance is 95% error).

« Architecture: 3 conv layers, final layer I is
a weighted L1 distance.

« Learnet predicts parameters of 2" conv.

* Find match among 20 characters from E,




Experiments
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Omniglot dataset —results

Error (%)

[
Xt
Siamese \F9><
w0 O
q Y &

Siamese (unshared)

Learnet

Siamese learnet




Experiments
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Single-object tracking
 Can be naturally posed as a one-shot
learning problem:

1. Learn classifier, with the initial
object patch as the exemplar.

2. Classify patches over remaining
video into object/background.

 Possible toupdate online, but in our
experiments this was not needed.
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Training

 UsedImageNet Video dataset.
« 4500 videos/ 1,200,000 bounding boxes.

e 30 classes: mostly animals (~75%) and
some vehicles (~25%). Class data ignored.
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e Pos. pairs: patches near in time (same video).
* Neg. pairs: patches far away/different videos.

* Architecture: slim AlexNet (less channels, for speed).



Experiments
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Fully convolutional architecture

« To efficiently classify many patches, the net is

T i =" .

applied convolutionally to a larger image. P
» Standard trick from detection; producesaheat =i = NUEN. S
map of possible object locations. ° gl | Gen
z ||— P
127x127x%3 6x6x128 \ .
X > B}
—_ SO >» /
X
50550 22x22x128




Experiments
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Visual Object Tracking (VOT) 2015 benchmark — results

Accuracy (loU) Num failures
Siamese
Siamese (unshared)
Siamese learnet

Accuracy (loU) Num failures
DSST

MEEM 0.458 107
MUSTer 0.471 132
DAT 0.442 113

SO-DLT 0.540 108




Experiments
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Visualization — predicted filters and activations
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Conclusions
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Conclusions

* |tispossible to obtain the parameters Tes“ﬁage ’ - ediction
of a deep network by a single feed- -W samerdiereny
. . 3
forward prediction.
Exemplar x
* Related to siamese nets, more general. [ g ol g 1 g I
» “Learning-to-learn” direction: Tw'l Iw'z

Train meta-parameters by solving
millions of small learning tasks offline,
as feed-forward computations.



