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One/few-shot learning

Learning to discriminate between previously unseen classes using only a
handful of training examples from these classes.
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▶ Episode: small subset sampled from {train,validation,test} split;
it is in its turn divided into base-train and base-test.

▶ I⋆ and C⋆: set of images and classes from a data split ⋆.
In standard classification, Itrain ∩ Itest = ∅ and Ctrain = Ctest.
Few-shot learning requires Itrain ∩ Itest = ∅ and Ctrain ∩ Ctest = ∅.

▶ Datasets: Omniglot, mini ImageNet, CIFAR-FS.
Also: Visual Decathlon[1] and Meta-dataset[2] span multiple domains.

▶ Often tackled with meta-learning.

Meta-learning

▶ Thrun&Pratt[3] (inspired by Mitchell[4]): when an “algorithm’s
performance on new tasks improves with experience and with the
number of tasks” (by dynamically adapting its inductive bias).

▶ Modern use (e.g. Ravi&Larochelle[5]): training is conducted at two
(nested) levels.
▶ Former operates within the scope of individual episodes (i.e. new learning tasks).
▶ Latter guides the former and tries to improve it across episodes.

Related work and motivation
▶ Metric learning-based (e.g. matching[7]/proto[8] networks): simple and

fast, but no adaptation to new episodes.

▶ Iterative (e.g. MAML[6]): adaptation of all parameters in new episodes,
but quite slow.

▶ Our aim: allow fast adaptation to new episodes.
Intuition: backpropagate through the solution of an efficient learning
problem like ridge regression.

General framework
To train+evaluate the predictor on one episode, we use training samples
ZE = {(xi, yi)} ∼ E and test samples Z ′

E = {(x′i, y′i)} ∼ E .

min
ω,ρ

1

|E| · |Z ′
E|

∑
E∈E

∑
(x′,y′)∈Z ′

E

L (f (ϕ (x′ ; ω) ; W ) , y′) ,

with W = Λ(ϕ(ZE ; ω) ; ρ)

Base learner Λ can be implemented in many ways; we experiment with ridge
regression and logistic regression.

R2-D2: ridge regression differentiable discriminator
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Λ(Z) = arg min
W

∥XW − Y ∥2 + λ ∥W∥2

= (XTX + λIe,e)
−1
XTY

= XT (XXT + λIn,n)
−1
Y (Woodbury identity)

The Woodbury identity makes the matrix to invert quadratic in n (num
examples, typically 1 or 5) rather than in e (embedding size, typically 100-
1000): big computational gain in few-shot learning scenario.

LR-D2: logistic regression differentiable discriminator

A similar derivation is also possible for iterative solvers with differentiable
operations. In particular, we experiment with Newton’s method applied to
logistic regression (aka Iteratively Reweighted Least Squares).
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Results on mini ImageNet and CIFAR-FS
mini ImageNet, 5-way CIFAR-FS, 5-way

Method 1-shot 5-shot 1-shot 5-shot
Matching net 44.2% 57% — —
MAML 48.7±1.8% 63.1±0.9% 58.9±1.9% 71.5±1.0%
MAML ∗ 40.9±1.5% 58.9±0.9% 53.8±1.8% 67.6±1.0%
Meta-LSTM 43.4±0.8% 60.6±0.7% — —
Proto net 47.4±0.6% 65.4±0.5% 55.5±0.7% 72.0±0.6%
Proto net ∗ 42.9±0.6% 65.9±0.6% 57.9±0.8% 76.7±0.6%
Relation net 50.4±0.8% 65.3±0.7% 55.0±1.0% 69.3±0.8%
SNAIL (with ResNet) 55.7±1.0% 68.9±0.9% — —
SNAIL (with 32C) 45.1% 55.2% — —
GNN 50.3% 66.4% 61.9% 75.3%
GNN∗ 50.3% 68.2% 56.0% 72.5%
Ours/R2-D2 (with 64C) 49.5±0.2% 65.4±0.2% 62.3±0.2% 77.4±0.2%
Ours/R2-D2 51.8±0.2% 68.4±0.2% 65.4±0.2% 79.4±0.2%
Ours/LR-D2 (1 iter.) 51.0±0.2% 65.6±0.2% 64.5±0.2% 75.8±0.2%
Ours/LR-D2 (5 iter.) 51.9±0.2% 68.7±0.2% 65.3±0.2% 78.3±0.2%

Results on Omniglot
Omniglot, 5-way Omniglot, 20-way

Method 1-shot 5-shot 1-shot 5-shot
Siamese net 96.7% 98.4% 88% 96.5%
Matching net 98.1% 98.9% 93.8% 98.5%
MAML 98.7±0.4% 99.9±0.1% 95.8±0.3% 98.9±0.2%
Proto net 98.5±0.2% 99.5±0.1% 95.3±0.2% 98.7±0.1%
SNAIL 99.07±0.16% 99.77±0.09% 97.64±0.30% 99.36±0.18%
GNN 99.2% 99.7% 97.4% 99.0%
Ours/R2-D2 (with 64C) 98.55±0.05% 99.66±0.02% 94.70±0.05% 98.91±0.02%
Ours/R2-D2 98.91±0.05% 99.74±0.02% 96.24±0.05% 99.20±0.02%

Vanilla transfer learning
Loss in (absolute) accuracy for not con-
sidering base learner Λ during training.

R2-D2
mini ImageNet (1-shot) -13.8%
mini ImageNet (5-shot) -11.6%
CIFAR-FS (1-shot) -11.5%
CIFAR-FS (5-shot) -5.9%

Speed
Time required to solve 10,000 episodes.

5-way/1-shot
Ours/R2-D2 1’23”
Ours/R2-D2 (64C) 1’4”
MAML (32C) 6’35”
Ours/LR-D2 (32C) 5’48”
Ours/R2-D2 (32C) 57”
Proto nets (32C) 24”
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